首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
纳米SiC颗粒增强铝基复合材料的拉伸性能   总被引:9,自引:0,他引:9  
用粉末冶金法制备了纳米SiC颗粒增强纯Al基复合材料(AlMMCs),对该材料的微观结构和拉伸性能进行了研究·结果表明,纳米SiC颗粒在含量很少时即对Al有明显的强化作用,此时,纳米颗粒在基体中的分散比较均匀;当含量较高时则纳米颗粒易于团聚,团聚会使SiC颗粒对Al的强化作用降低·纳米SiC颗粒含量发生变化,SiCp/AlMMCs的断裂机制也有所改变·  相似文献   

2.
纳米颗粒填充聚四氟乙烯基复合材料的分散性表征   总被引:1,自引:0,他引:1  
对纳米Si3N4、AlN和SiC颗粒填充聚四氟乙烯(PTFE)基复合材料表面形貌的扫描电子显微镜(SEM)图像进行处理与分割,利用颗粒分散度方法表征分割图像中纳米颗粒的团聚程度和分散性.结果表明:在3种纳米颗粒填充PTFE基复合材料中,纳米SiC的分散性最佳,纳米AlN的分散性最差;当纳米Si3N4和SiC的质量分数为7%、纳米AlN的质量分数为5%时,PTFE基复合材料的分散性较好;经钛酸酯偶联剂处理后,可使纳米Si3N4和SiC在PTFE基复合材料中的分散性提高,但会使纳米AlN在PTFE基复合材料中的分散性下降.  相似文献   

3.
纳米SiC/PTFE复合材料微观结构SEM图像处理及分析   总被引:1,自引:1,他引:0  
为了对纳米聚合物复合材料微观结构进行定量分析,利用Visual C++开发纳米SiC/PTFE复合材料SEM图像分析系统,该系统包括图像灰度均衡、灰度拉伸、平滑与滤波等预处理功能以及图像分割、图像形态学处理、粒子标记等处理分析功能,可对SEM图像中粒子大小进行区分。结果表明,纳米SiC/PTFE复合材料SEM图像经直方图均衡化处理后,对比度明显增强,灰度级变宽,灰度拉伸使SEM图像中纳米粒子显示更清晰,平滑与滤波处理能抑制图像中的噪声。采用最大类间方差法分割图像的效果优于迭代阈值分割法,图像形态学处理能提高纳米粒子信息被识别的能力,粒子标记能为PTFE中不同团聚尺寸的纳米粒子赋予不同的灰度值以对其进行区分。  相似文献   

4.
利用硅烷偶联剂对纳米SiO2进行表面改性,进而通过共混法将改性后的纳米SiO2粒子分散到环氧树脂(Epoxy)中,制备了不同纳米SiO2含量的SiO2/EP复合材料.利用IR,SEM和TGA、阻抗分析仪等研究了SiO2添加量对复合材料微观结构、热稳定性和介电性能的影响.结果表明,随着纳米SiO2含量的增加,SiO2/EP复合材料的热稳定性逐渐升高,介电常数和损耗因数则呈先降低后增加趋势;当纳米SiO2含量为4%时,纳米颗粒在复合材料中分散均匀,复合材料的热稳定性好,介电性能最优(当测试频率为1GHz,介电常数为2.86,介电损耗为0.023 53).分析了复合材料热稳定和介电性能变化的微观机理.  相似文献   

5.
本文制备纳米SiC基体改性的SiC-C/C复合材料,利用X射线衍射技术、高分辨率透射电镜等研究SiC对碳材料的石墨化度的影响.纳米SiC能够显著促进碳基体材料的石墨化度,同时通过高分辨率透射电镜在纳米SiC颗粒周围观测到明显的石墨化结构,并且距离SiC越近,碳基体的石墨化程度越高.通过静态氧化实验研究SiC-C/C复合材料的抗氧化性能.结果表明,随着SiC加入量的增加复合材料的抗氧化性显著提高,纳米SiC在高温下生成较为均匀的SiO2保护层,覆盖在碳材料的表面,阻碍氧气与碳材料的接触,并且SiC含量越高,形成的保护层越厚,抗氧化能力越强.  相似文献   

6.
采用粉末冶金法制备了不同体积分数SiC颗粒增强的纳米SiCp/108Al复合材料。利用光学显微镜、扫描电子显微镜、透射电子显微镜对复合材料的微观组织及拉伸断口形貌进行了表征,测定了复合材料的相对密度、硬度、抗拉强度、屈服强度及延伸率,分析了纳米SiC颗粒体积分数对复合材料组织及性能的影响。分析结果表明:添加纳米SiC颗粒的SiCp/108Al复合材料组织明显细化,性能得到提高。当纳米SiC颗粒体积分数为2%时,复合材料组织的晶粒最细小,缺陷较少,同时纳米SiC颗粒分布均匀,复合材料的性能最佳,相对密度达到98%。复合材料的硬度达到102HV,抗拉强度达到348MPa,屈服强度达到229MPa,分别比108Al基体提高了34%、26%和43%。当纳米SiC颗粒体积分数较大时,SiC颗粒会出现明显团聚现象,导致复合材料的性能降低。  相似文献   

7.
研究了经制粉→混料→真空抽气→热挤压工艺制备的6066Al/SiCp复合材料的组织特征与阻尼性能.复合材料的阻尼特征通过动态机械热分析仪(DMTA)测量,得出了2种不同SiC含量的6066Al/SiCp复合材料及6066Al合金在温度为30~250℃,频率为0.1,1,10和30Hz时的阻尼值.利用扫描电镜、光学显微镜对复合材料组织特征进行了分析,根据组织特征及阻尼数据对复合材料的阻尼机制进行了讨论.结果表明将2~3μm的SiC颗粒加入6066Al中,当SiC含量为7%(体积分数)时,增强的SiC颗粒分布较均匀,与基体结合良好;当SiC含量为12%时,SiC易聚集成团.少量SiC能明显提高6066Al的阻尼能力,尤其是高温阻尼性能;6066Al/SiCp复合材料的高阻尼性能主要是SiC颗粒加入后使位错密度大大增加,基体晶界及基体与SiC颗粒界面的存在使材料在循环载荷下消耗能量所致.  相似文献   

8.
利用冷压烧结的方法制备不同含量和不同粒径的SiC颗粒填充聚四氟乙烯(PTFE)复合材料,用M-200环块摩擦磨损试验机进行试验,研究SiC颗粒增强PTFE复合材料在干摩擦状态下的摩擦磨损特性,并且用电子扫描显微镜对复合材料的磨损表面形貌进行观测,对复合材料的磨损机制进行理论分析。此外,还比较了使用和不使用耦联剂对颗粒进行处理的实验对比。结果显示:SiC增强PTFE复合材料耐磨性能有了明显的提高。含量的增加使得耐磨性增强,摩擦系数增大;粒径的增大使得耐磨性降低,摩擦系数增大。比较而言,纳米SiC对PTFE摩擦磨损性能的改进最好。  相似文献   

9.
研究了通过一步球磨的粉末冶金工艺制备Si Cp/Mg非均匀纳米复合材料的机理。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、能谱仪(EDS)和电子背散射衍射(EBSD)对SiCp/Mg复合粉体的形貌演化过程、非均匀纳米复合材料的物相组成和微观结构特征进行了分析。结果表明:在球磨的过程中,附着在镁颗粒表面的纳米碳化硅粉体嵌入镁颗粒的表层形成核壳结构;复合粉体芯部不仅没有SiC颗粒,而且未受到研磨球的直接作用,使得复合粉体芯部仍然保持为尺寸较大的粗晶,将这种复合粉体进行烧结就能获得非均匀纳米复合材料;通过调节球磨时间,可以对非均匀纳米复合材料的微观结构进行调控。  相似文献   

10.
采用搅拌摩擦加工方法制备铝基SiC复合材料,研究SiC颗粒在复合材料中的分布均匀性问题,并对复合材料的力学性能及断口形貌进行分析.结果表明:1、2、3道次加工后SiC颗粒在复合材料中出现漩涡状和带状团聚现象;经4道次搅拌摩擦加工后复合层中SiC颗粒均匀弥散分布在基体金属中,复合层组织发生明显细化;添加SiC颗粒4道次加工后复合材料显微硬度提高,抗拉强度降低.搅拌摩擦区的显微硬度平均值为68HV,为基体金属显微硬度(45HV)的1.5倍;抗拉强度降低为176MPa,为基体金属的81%;复合材料拉伸试样总体表现为韧性断裂,断裂机制包含韧性断裂以及SiC颗粒与基体结合界面的撕裂.  相似文献   

11.
 采用KH-550硅烷偶联剂对SiC粉体进行表面改性,通过单因素实验及正交试验确定出改性过程最优化工艺参数:反应温度90℃,反应时间4h,KH-550硅烷偶联剂用量1.5g,并通过扫描电镜、X射线衍射仪、红外光谱仪、激光粒度分析仪对制备的改性粉体进行表征,分析改性对SiC料浆分散稳定性的影响。结果表明,SiC微粉经偶联剂处理后没有改变原始SiC微粉的物相结构,只是改变了其在水中的胶体性质;中位径d0.5略有减小,粒度分度分布范围变窄,扫描电子显微镜(SEM)显示微粉团聚现象减少,分散性得到改善;改性SiC微粉与原始SiC微粉相比,表面特性发生了很大变化,在酸性条件下Zeta电位有显著的提高,pH值为3.78时,Zeta电位获得最高正电位为41mV,悬浮液的分散稳定性得到明显改善。  相似文献   

12.
弥散SiC颗粒增韧氧化铝陶瓷内部残余应力分析   总被引:2,自引:0,他引:2  
根据烧结原理,建立了弥散颗粒分布模型及残余应力计算模型,并进行了一维方向上的残余应力计算,从理论上探讨了弥散SiC颗粒增韧氧化铝陶瓷的相应机理,通过应力计算分析了影响残余应力大小的基本因素,为合理选取弥散颗粒的加入量提供了理论依据。  相似文献   

13.
LC4表面纳米SiC和PTFE双颗粒复合阳极氧化膜的制备   总被引:1,自引:0,他引:1  
以250g/L硫酸+15g/L草酸为基础电解液,通过添加2g/L表面改性的纳米SiC颗粒和15ml/LPTFE乳液,组成双颗粒复合阳极氧化电解液,利用脉冲电源在LC4铝合金表面制备双颗粒复合的阳极氧化膜.结果表明:在脉冲电源频率80Hz、占空比80%、电流密度3A/dm2、温度0℃、氧化时间40min等条件下,在LC4铝合金表面成功制备出厚度为20μm,硬度为4340MPa的双颗粒复合的Al2O3-SiC-PTFE阳极氧化膜;复合氧化膜结构中存在着大量的微米级的孔隙缺陷为复合沉积双颗粒提供了复合场所,形成了具有纳米SiC颗粒增强膜的硬度和PTFE颗粒增强膜的自润滑性能的双颗粒复合氧化膜.  相似文献   

14.
四方氧化锆相变增韧、碳化硅晶须补强、碳化钛粒子弥散强化,同时引入一个新的陶瓷基复合材料系统中产生了叠加的强韧化效果。热压ZTA-SiCw-TiC复相陶瓷材料与Al2O3-SiCw-TiC相比具有更高的综合机械性能。碳化钛在基体中形成连续的骨架阻碍晶粒的长大,随着碳化钛含量的增加,基体的硬度明显增加。主要强韧化机理有相变增韧、晶须拔出、载荷转移、裂纹偏转等。基体的主要断裂方式为穿晶解理断裂。  相似文献   

15.
The effect of elongation of particles in dispersion powders on mechanical performance of polytetrafluoroethylene(PTFE) flat filament is analyzed. Morphology and elongation of particles in four different PTFE dispersion powders are analyzed. Meanwhile, the correlation between elongation and diameter of dispersion particles is discussed. Strength-elongation curves of PTFE flat filaments made of four different dispersion powders are obtained from measurements of mechanical behaviors. Experimental results show that PTFE flat filament manufactured with dispersion particles having appropriate elongation(0.55-0.60) shows excellent mechanical performance. This work could be regarded as a reference for manufacturing high performance PTFE flat filaments.  相似文献   

16.
本文报道了制备(Ni-W)一SiC复合镀层的电沉积工艺。研究了SiC固体微粒对于基质合金结构的影响,测试了复合镀层的硬度及耐磨性。结果表明,SiC微粒对于Ni一W合金有较强的晶化作用;SiC微粒的复合,明显增加了Ni一W合金的硬度和耐磨性。  相似文献   

17.
针对液态搅拌法制备SiCp/ZA27复合材料,研制出高效复合熔剂,用它处理SiC颗粒表面,以改变颗粒表面物理结构和化学特性,引起反应润湿,造成熔体的成分起伏并优化结晶条件,从而一气完成改善润湿、变质精炼和活性吸附金相分析表明:宏观上制得的复合材料组织致密、颗粒分布均匀且界面结合良好;微观上颗粒处于晶内,呈现颗粒吞没机制就凝固特性,复合材料宏观上仍以糊状方式凝固,但在颗粒微区内,凝固方式从颗粒表层至熔体中心由中间凝固,甚至逐层凝固,向糊状凝固方式过渡通过比较试验,分析并获得了最优熔剂处理工艺和最优液态搅拌工艺经凝固过程固液界面行为分析证实,控制合适的熔剂层厚度和配比能够实现颗粒吞没机制,使颗粒处于晶内,此时颗粒分布均匀、组织致密、界面结合强,制得的复合材料的常温抗拉强度约为310~360MPa,延伸率约处于0.5%~1.5%  相似文献   

18.
复合电铸制备Cu/SiCp复合材料的工艺   总被引:7,自引:0,他引:7  
采用复合电铸工艺制备碳化硅颗粒 (Si Cp)增强铜基复合材料 ,重点研究了添加剂、颗粒粒径、电流密度、施镀温度、搅拌强度等工艺参数对 Cu/ Si Cp 复合材料中 Si Cp 含量的影响 .结果表明 ,优化各工艺参数可有效促进 Si Cp 与铜离子的共沉积 ,提高复合材料中增强固体颗粒的含量 .在此基础上研究开发了一种可有效促进 Si C颗粒与铜共沉积的混合添加剂 ,可获得 Si Cp 含量较高的Cu/ Si Cp复合材料 .  相似文献   

19.
SiC微粉在水介质中的分散研究   总被引:1,自引:0,他引:1  
研究了多热源炉和无限微热源炉合成的SiC微粉和晶须在水介质中的自然分散行为和不同分散方法以及不同分散剂在不同条件下对其分散作用的影响。结果表明,超声波对SiC微粉的分散效果较明显;不同的分散剂对SiC微粉均有不同程度的分散作用;分散剂四甲基氢氧化铵对SiC微粉的分散效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号