首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
采用Gleeble-1500热压缩模拟试验机在变形温度310~510℃、应变速率0.001~10 s-1的条件下对Al-1.03Mg-1.00Si-0.04Cu铝合金进行热压缩实验,研究该合金热变形行为及热加工特征,建立该合金热变形时的本构方程和加工图.研究结果表明:Al-1.03Mg-1.00Si-0.04Cu铝合金热变形过程中,随着应变速率的增加和变形温度的降低,流变应力上升,合金流变应力达到峰值后曲线呈现稳态流变特征;合金变形激活能Q平均值为170.878kJ/mol,高温变形行为可用双曲正弦形式的本构方程来描述;根据动态材料模型建立合金的加工图,在320~400℃和0.001~0.005 s-1范围内变形时加工图上出现一个动态回复的峰区,峰值效率为27%;Al-1.03Mg-1.00Si-0.04Cu铝合金高温变形时,Mg2Si相的析出有效阻碍了位错运动,合金峰区下变形激活能大于多晶纯铝的激活能.  相似文献   

2.
为了解决Cr20 Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 kJ·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

3.
采用Gleeble-1500热模拟试验机,在变形温度为380℃~500℃和应变速率为0.001~10 s-1的条件下对含钪铝锂合金的热变形行为进行了研究。结果表明:含钪铝锂合金流变应力随变形温度升高和应变速率的降低而减小。以实验为基础,利用作图法和线性回归方法求解得出各参数数值和流变峰值应力方程,利用该方程预测流变应力值与实验结果吻合较好;该合金在高温压缩变形中,在变形温度大于470℃和应变速率小于0.1 s-1时,合金发生了动态再结晶,且温度越高、应变速率越低,该合金越易发生动态再结晶。在380℃~470℃,0.1~10 s-1条件下,对该合金进行热变形加工较为适宜。  相似文献   

4.
Al-Mg-Sc合金热压缩变形的流变应力行为   总被引:4,自引:1,他引:3  
采用热模拟试验对1种Al-Mg-Sc合金进行等温热压缩实验,研究该合金在变形温度为300~450℃,应变速率0.001~1 s-1条件下的热压缩变形流变应力行为.结果表明:该Al-Mg-Sc合金在变形温度为300℃,应变速率0.01~1 s-1的条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征;而在其他条件下,应力达到峰值后随应变的增加而逐渐下降,表现出动态再结晶特征.应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,通过线性回归分析计算出该材料的应变硬化指数n以及变形激活能Q,获得该铝合金高温条件下的流变应力本构方程.  相似文献   

5.
新型Al-Mg-Si-Cu合金热压缩流变应力研究   总被引:1,自引:0,他引:1  
在Gleeble 1500热模拟机上对一种新型Al-Mg-Si-Cu合金热压缩流变应力行为进行了研究,应变速率为 0.005~5 s-1、变形温度为350~550 ℃.结果表明:在较小应变(<0.15)出现一峰值后流变应力随应变的增加有所降低,表现出较明显的动态软化;在实验范围内,流变应力值随着应变速率减少和变形温度升高而降低,可用Zener-Hollomon参数的幂指数关系描述合金的流变应力行为,其变形激活能Q为236 kJ/mol.图5,参11.  相似文献   

6.
采用Gleeble-1500热/力模拟试验机进行压缩实验,研究Al-6Mg-0.4Mn-0.2Sc铝合金在变形温度为300~500℃、应变速率为0.001~10 s-1范围内的变形行为.计算应力指数和变形激活能,并采用Zener-Hollomon参数法构建合金高温塑性变形的本构关系.根据材料动态模型,计算并分析合金的加工图.研究结果表明:热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,平均激活能为158.92 kJ/mol,大于其自扩散激活能.根据加工图确定了热变形的流变失稳区,并且获得了热变形过程的最佳工艺参数,其热加工温度为430~480℃,应变速率为5~10s-1,温加工温度为320-400℃、应变速率为0.01~0.001 s-1.  相似文献   

7.
一种新型Al-Cu-Li系合金的热压缩流变应力   总被引:6,自引:0,他引:6  
采用Gleeble-1500热模拟机高温等温压缩试验,研究了一种新型Al-Cu-Li系合金在应变速率为0.01~10s-1、变形温度为300~500℃条件下的流变应力特征.结果表明:流变应力随变形温度的升高而降低,随变形速率的提高而增大;采用Z参数的双曲正弦函数描述该合金高温变形的峰值流变应力,获得了峰值流变应力解析式,其热变形激活能为239.02kJ·mol-1.  相似文献   

8.
在Gleeble-3500D热模拟试验机上,对挤压态CuCr25合金在应变速率为0.01~10s~(-1),变形温度为750~900℃的条件下进行恒温压缩模拟实验.结果表明:挤压态CuCr25合金在热变形过程中流变应力随变形温度升高和应变速率降低而减小;可用双曲正弦模型来描述合金的流变行为,其平均激活能为383.4kJ/mol;基于动态材料模型获得了挤压态CuCr25合金的热加工图,并结合金相显微组织分析得到了该合金在实验参数范围内较优的热加工工艺参数范围:加工温度830~900℃,应变速率为0.01~0.1s-1.  相似文献   

9.
采用等温压缩试验,在变形温度为600~1050℃、应变速率为0.002~0.2s-1的条件下,研究了粉末冶金Ti-47.5Al-2.5V-1.0Cr合金的高温压缩性能与高温变形行为.结果表明:合金在高温压缩变形时,屈服强度随变形温度的升高、应变速率的降低而降低,塑性趋于升高.合金在高温塑性变形时,峰值流变应力、应变速率和变形温度之间较好地满足双曲正弦函数形式修正的Arrhenius关系,说明其变形受热激活控制.在800~1050℃/0.002~0.2s-1范围内,合金应变敏感系数m为0.152,高温变形激活能Q为376kJ.mol-1.  相似文献   

10.
一种低碳微合金管线钢的热变形行为   总被引:1,自引:1,他引:0  
采用MMS-200热力模拟实验机进行高温压缩试验,研究一种低碳微合金管线钢在应变速率为0.1,1.0和5.0s-1,变形温度为800~1150℃条件下的热变形行为及流变应力特征,利用透射电镜和光学显微镜观察高温压缩变形后的组织,采用Zener-Hollomon参数的双曲正弦函数来描述实验钢的热变形流变应力行为。研究结果表明:流变应力随着变形温度的升高而降低,随着变形速率的提高而增大;实验钢在高温压缩过程中存在动态回复和动态再结晶2种软化机制,在较高变形温度和较低应变速率条件下,才发生动态再结晶;在获得的流变应力解析式中,结构因子A、应力水平参数α和应力指数n分别为2.6×1018s-1,0.012MPa-1和5.73,热变形激活能为518.73kJ/mol。  相似文献   

11.
在Gleeble-1500热模拟试验机上对Al-0.80Mg-0.63Si-0.61Cu合金进行等温热压缩试验,研究其在高温压缩变形中的流变应力行为.研究结果表明:流变应力随应变速率的增大而增大,随变形温度的升高而降低,在高应变速率和较低温度条件下,应力出现锯齿波动,呈不连续再结晶特征;该铝合金热压缩变形的流变应力行为可用包含Arrhenius项的Zener-Hollomon参数来描述,其变形激活能为176.54 kJ/mol.  相似文献   

12.
通过单道次压缩试验,对Fe-Mn-C系孪生诱导塑性钢(TWIP钢),在800~1 000℃,应变速率0.01~10.0 s-1条件下的热变形行为及组织演变规律进行了研究.实验结果表明,升高温度和降低应变速率均可促进奥氏体发生动态再结晶.根据实验所得流变应力曲线,由热变形方程计算得到了TWIP钢热变形激活能Q=421.37 kJ/mol.并在此基础上得到了TWIP钢高温变形的热加工方程.采用Z参数预测了动态再结晶的临界条件,当Z≤9.94×1018时TWIP钢易发生动态再结晶,具有较好的热加工性能.  相似文献   

13.
在变形温度为900~1060℃和应变速率为0.001~10s-1条件下,对Ti62421s合金进行变形量为60%的热压缩变形,以研究Ti62421s合金的热压缩流变应力行为.研究温度与应变速率对Ti62421s热变形流变应力的影响,建立Ti62421s合金热变形流变应力的本构方程和加工图.研究结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳:当在高应变速率(10s-1)下变形时,出现不连续屈服现象:应力峰值随应变速率的增大而增大,随温度的升高而呈减小趋势:合金最佳变形工艺参数为:温度θ=980℃,应变速率(ε)=0.01~0.1s-1.  相似文献   

14.
通过Gleeble 3500型热模拟机研究了Mg97Y2Zn1镁合金在热变形过程中流变应力与变形温度和应变速率等之间的关系,并建立了相应的流变应力模型.结果表明:在所采用的试验条件下,Mg97Y2Zn1合金的流变应力随变形温度的升高而降低,随应变速率的增加而提高;Mg97Y2Zn1合金的流动应力应变行为可用Zener Hollomon参数表示;Mg97Y2Zn1合金在高温塑性变形过程中的平均变形激活能为137.277 kJ/mol.  相似文献   

15.
采用热模拟试验机对Ti-5Al-5Mo-5V-1Cr-1Fe合金进行等温压缩试验,获得变形温度为750~900℃和应变速率为0.001~1 s 1时的真应力真应变曲线,并运用修正后的试验数据建立真应变为0.7的热加工图。通过显微组织观察,分析合金的变形机理,确定热变形失稳区。研究结果表明:Ti-5Al-5Mo-5V-1Cr-1Fe合金加工温度范围较宽,当加工温度低于800℃且变形速率大于0.1 s 1时易发生绝热剪切,造成流变失稳;随着变形温度升高,功率耗散因子η有增大趋势,合金的流动软化机制由动态回复逐渐变为动态再结晶,显微组织也随之细化、均匀。  相似文献   

16.
利用MMS-300热模拟试验机开展单道次压缩实验和光学显微组织观察,研究了S38MnSiV非调质钢在温度为1173~1423K及应变速率为001~10s-1条件下的热变形行为,获得了应变速率和变形温度对该钢动态再结晶行为及组织的影响规律,按照双曲正弦方法确定了实验钢的热变形激活能和本构方程.结果表明:变形温度越高,应变速率越低,越有利于动态再结晶的发生;随着动态再结晶的进行,奥氏体平均晶粒尺寸随应变的增加逐渐减小;当应力达到稳态时,奥氏体晶粒尺寸不再随应变而发生变化.  相似文献   

17.
采用热力模拟试验机Gleeble-3500对一种铸态含氮M2高速钢在0.01~1.0s-1及1000~1100℃条件下进行热压缩变形,获得了铸态含氮M2高速钢的流变曲线并分析了变形后的显微组织特性。实验结果表明,铸态含氮M2高速钢热变形过程中的能量消耗效率随应变速率的升高而降低,流变失稳区随应变量的增加向低应变速率和低温区域转变,热变形激活能为588.733kJ/mol,同时得到了其热变形方程和热加工图,获得热加工最佳工艺窗口为0.01~1.0 s-1和1 050~1 100℃。  相似文献   

18.
采用gleeble-1500 热模拟试验机,对TA15钛合金4种典型组织试样进行了高温准静态压缩试验,研究了不同原始组织的TA15钛合金高温压缩力学行为,不同组织对其高温准静态力学性能及温度敏感性的影响.结果表明:在同一温度下,4种组织的流变应力随温度的升高而降低,且最初流变应力随应变的增加快速增加,当流变应力达到一个峰值后,逐渐下降,最后处于稳定流变状态;不同的组织对TA15钛合金高温准静态力学性能有很大影响;600 ℃变形时,网篮组织的温度敏感性最低,固溶时效组织其次,双态组织第三,等轴晶粒组织温度敏感性最高;700~900 ℃下变形,各组织温度敏感性的排序不变,但网篮组织的温度敏感性和其它3种组织温度敏感性的差距缩小;当在超过相变温度的1000 ℃下变形时,各试样的组织完全相同,其温度敏感性不再有任何差异,其力学性能也几乎相同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号