首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为了解决Cr20 Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 kJ·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

2.
采用Gleeble-1500热压缩模拟试验机在变形温度310~510℃、应变速率0.001~10 s-1的条件下对Al-1.03Mg-1.00Si-0.04Cu铝合金进行热压缩实验,研究该合金热变形行为及热加工特征,建立该合金热变形时的本构方程和加工图.研究结果表明:Al-1.03Mg-1.00Si-0.04Cu铝合金热变形过程中,随着应变速率的增加和变形温度的降低,流变应力上升,合金流变应力达到峰值后曲线呈现稳态流变特征;合金变形激活能Q平均值为170.878kJ/mol,高温变形行为可用双曲正弦形式的本构方程来描述;根据动态材料模型建立合金的加工图,在320~400℃和0.001~0.005 s-1范围内变形时加工图上出现一个动态回复的峰区,峰值效率为27%;Al-1.03Mg-1.00Si-0.04Cu铝合金高温变形时,Mg2Si相的析出有效阻碍了位错运动,合金峰区下变形激活能大于多晶纯铝的激活能.  相似文献   

3.
在变形温度为900~1060℃和应变速率为0.001~10s-1条件下,对Ti62421s合金进行变形量为60%的热压缩变形,以研究Ti62421s合金的热压缩流变应力行为.研究温度与应变速率对Ti62421s热变形流变应力的影响,建立Ti62421s合金热变形流变应力的本构方程和加工图.研究结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳:当在高应变速率(10s-1)下变形时,出现不连续屈服现象:应力峰值随应变速率的增大而增大,随温度的升高而呈减小趋势:合金最佳变形工艺参数为:温度θ=980℃,应变速率(ε)=0.01~0.1s-1.  相似文献   

4.
采用Gleeble-3500热模拟机,在变形温度为950~1 150℃、应变速率为0.001~10s-1的条件下,研究了粗大柱状晶粒纯镍的热变形行为和加工图.结果表明:热压缩过程中流变应力随应变速率增大而增大,随变形温度降低而增大.流变应力与应变速率、变形温度之间的关系用Zener-Hollomon参数来描述,热变形激活能为312.4kJ/mol.基于动态材料模型(DMM)热加工图及结合合金相显微组织分析,得到纯镍较优的热加工参数:变形温度为1 060~1 120℃,应变速率为0.03~0.20s-1的蛋形区域.  相似文献   

5.
在Gleeble-1500热模拟实验机上对原位生成TiC颗粒增强钛基复合材料进行热压缩实验,研究变形温度为700~950℃,应变速率为0.001~1s-1时的热变形行为.研究结果表明:变形温度和应变速率对流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增加而升高.原位生成钛基复合材料在(α+β)相区激活能为357.09kJ/mol,β相区激活能为227.18k.J/mol,采用Zener-Hollomon参数法构建其高温塑性变形的本构关系.根据动态材料模型,建立原位生成钛基复合材料的加工图,并确定热变形的流变失稳区域.  相似文献   

6.
Al-Mg-Sc合金热压缩变形的流变应力行为   总被引:4,自引:1,他引:3  
采用热模拟试验对1种Al-Mg-Sc合金进行等温热压缩实验,研究该合金在变形温度为300~450℃,应变速率0.001~1 s-1条件下的热压缩变形流变应力行为.结果表明:该Al-Mg-Sc合金在变形温度为300℃,应变速率0.01~1 s-1的条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征;而在其他条件下,应力达到峰值后随应变的增加而逐渐下降,表现出动态再结晶特征.应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,通过线性回归分析计算出该材料的应变硬化指数n以及变形激活能Q,获得该铝合金高温条件下的流变应力本构方程.  相似文献   

7.
采用Gleeble-1500热模拟试验机进行了T91钢的压缩试验,研究了变形温度为1100~1250℃、应变速率为0.01~1 s-1时该钢的变形行为,分析了流变应力与应变速率和变形温度之间的关系,计算了高温变形时应力指数和变形激活能,并采用Zener-Hollomon参数法构建该钢高温塑性变形的本构关系,绘制了动态再结晶图和热加工图.结果表明:在试验变形条件范围内,其真应力-真应变曲线呈双峰特征;钢中发生了明显的动态再结晶,且再结晶类型属于连续动态再结晶.T91钢的热变形激活能为484 kJ.mol-1,利用加工图确定了热变形的流变失稳区,结合力学性能,可以优先选择的变形温度为1200~1 250℃,应变速率不高于0.1 s-1.  相似文献   

8.
热轧AZ31镁合金板材高温塑性变形行为   总被引:1,自引:1,他引:0  
采用Gleeble-1500热/力模拟系统,研究热轧的AZ31镁合金板材在应变速率0.01,0.1,1,5和10 s-1,变形温度473~723 K,预设最大变形量80%条件下的高温塑性变形行为。采用实验得到的真应力-真应变曲线,分析合金流变应力与应变速率、变形温度之间的关系,计算合金高温变形的材料参数和激活能;用Zener-Hollomon参数法建立合金高温变形的本构关系,并比较实测应力与计算得到的应力。研究结果表明:AZ31镁合金高温变形时受应变速率的影响较大,应变速率小于1 s-1时(573~723 K),合金的真应变接近100%,但当应变速率大于5 s-1时,实验温度范围内合金的真应变都小于60%。AZ31镁合金高温变形的流变应力-应变速率-变形温度的关系可用双曲正弦函数描述,激活能随应变速率和变形温度的提高,从110.4 kJ/mol升高到163.2 kJ/mol。实验获得的AZ31镁合金应力-应变本构方程的计算结果与实验结果较吻合。  相似文献   

9.
粉末冶金AZ91镁合金的高温压缩流变应力行为   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟机,对快速凝固粉末冶金AZ91镁合金在应变速率为0.001~1 s-1,变形温度为250~400 ℃条件下的流变应力行为进行了研究.结果表明:快速凝固粉末冶金AZ91镁合金热压缩变形的流变应力受到变形温度和应变速率的强烈影响.流变应力主要呈现幂指数关系.其热变形应力指数n为8.7,热变形激活能Q为132.6 kJ/mol.  相似文献   

10.
Mg-5.3Zn-0.8Zr镁合金高温变形行为的热模拟研究   总被引:2,自引:0,他引:2  
采用Gieeble-1500热模拟试验机进行压缩实验,研究Mg-5.3Zn-0.8Zr镁合金在变形温度为473~723 K、应变速率为0.01~1.00s-1的变形行为.分析合金流变应力与应变速率、变形温度之间的关系,计算高N(573~723 K)下合金变形时的应力指数和变形激活能,并采用Zener-Hollomon参数法构建该合金高温塑性变形的本构关系.研究结果表明:在实验变形条件范围内,合金的真应力-真应变曲线为动态再结晶型;在573~723 K,应力指数随着变形温度升高而增加,而且增加的幅度逐渐增大,变形激活能随着变形温度和应变速率的改变而发生变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号