首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
研究二元函数高阶Cauchy中值定理"中间点"(x_0+θΔx,y_0+θΔy),当点B(x_0+Δx,y_0+Δy)沿BA连线趋向于点A(x_0,y_0)时的渐近性态,利用比较函数概念,在一定条件下建立了二元函数高阶Cauchy中值定理"中间点"(x_0+θΔx,y_0+θΔy)的几个渐近估计式.  相似文献   

2.
1 函数极限证明的基本思想 要证明x→x_0(或x→∞)时函数f(x)的极限是A,当ε>0后,如果我们能找到以x_0为中心的δ邻域(x_0-δ,x_0+δ)(或N>0),当x取这邻域中异于x_0的一切值(或|x|>N)时,不等式 | f(x)-A|<ε 恒能得到满足,则就证明了x→x_0(或x→∞)时,f(x)的极限是A。 问题在于怎样找到上述要求的点x_0的δ邻域(和N)? 从函数极限的精确定义中,我们知道,如果x→x_0时,f(x)的极限是A,则点x_0的δ邻域  相似文献   

3.
研究了二元函数柯西中值定理"中间点"(x_0+θ△x,y_0+θ△x),当点B(x_0+△x,y_0+△y)沿AB连线趋向于点A (x_0,y_0)时的渐近性态,利用比较函数概念,在一定条件下证明了二元函数柯西中值定理"中间点"(x_0+θ△x,y_0+θ△x)新的渐近性定理,获得了渐近估计式统一和发展了有关文献中的相应结果。  相似文献   

4.
本文证明了在以下条件: 若f(x,y)是区域D:|x-x_0|≤a,|y-y_0|≤b上的函数,并且|f(x,y)|≤M,当固定x,y∈[y_0-b,y_0+b]时,f(x,y)是y的左连续递增涵数;当固定y,x∈[x_0-a,x_0+a]时,f(x,y)是x的递增涵数时,那么(E)在(?){a,b/M}上有递增函数解。  相似文献   

5.
关于多元函数可微性的充分条件,在许多有关教材和参考书中是这样写的(以二元函数为例): 假定函数U=f(x、y)的偏导数f′_x及f′_y在点P_0(x_0、y_0)连续,则函数在该点可  相似文献   

6.
极限的概念是数学分析的基础。只有正确理解极限的概念以及掌握求极限的方法才能学好数学分析。我们知道二元函数极限从定义、柯西准则到基本性质与一元函数极限理论基本上是平行的。但由于空间结构的变化,又显示出二元函数与一元函数极限的本质差异。这些差异,首先表现在重极限、累次极限、方向极限的关系上。f(x,y)在(x_0,y_0)点的两个累次极限  相似文献   

7.
定理:若函数f(x,y)以及(?)都在区域G内连续,则方程(dx)/(dx)=f(x,y)的解y=(?)(x,x_0,y_0)作为x,x_0,y_0的函数,在它存在范围内有连续编导数(?)。一般教科收都是直接利用编号数定义来求,其过程相当繁琐,今给出一种简单的证法。  相似文献   

8.
本文应用有限复盖定理,对二元函数可积的充分性给出了两个新结论.定理1 设f(x,y)是定义在有界闭区域D={(x,y)|a≤x≤b,c≤y≤d}上的有界函数.若f(x,y)在D上对y关于x一致连续,对x只有第一类间断点,则f(x,y)在D上可积.定理2 设f(x,y)是定义在有界闭区域D={(x,y)|a≤x≤b,c≤y≤d}上的有界函数.f(x,y)在D上有无穷多个间断点,但对(?)(x_0,y_0)∈D,极限(?) f(x,y)都存在,则f(x,y)在D上可积.  相似文献   

9.
复合函数求导的链武法则是:设函数 u=(?)(x)在点 x_0处可导,y=f(u)在点 u_0(u_0=(?)(x_0))可导,则复合函数 f_0(?)(x)在点 x_0可导,且(f_0(?))′(x_0)=f′(u_0)(?)′(x_0)。对于这个法则,我们给出一个新的证明。为此先引入两个引理。定义设 E(?)R。f在 E 上有定义,x_0。∈(?)((?)是 E 的闭包),如果存在常数 l,对于任给ε>0,存在δ>0,当x∈(x_0-δ,x_0+δ)∩E-{x_0}时,恒有 f(x)∈(l-ε,l+ε),则称 f 在x_0关于 E 有极限 l。记作 l=(?)f(x)。  相似文献   

10.
设y=f(u),u=φ(x),u在x_0可微分;u_0=φ(x_0),y在u_0可微分,则复合函数y=f(φ(x))在x_0可微分,而且(1) dy/dx|_(x=x_0)=f′(u_0)·φ′(x_0)。这个复合函数求导数法则的证明,在通常的数学分析教科书上,有如下两种: 〔证法一〕给x从x_0起取增量△x(≠0),则相应地函数u从u_0起得增量△u,y从f(φ(x_0))起得增量△y。因为f′(u_0)存在,所以当△u≠0时,令α=△y/△u-f′(u_0),就有limα=0,而且 △u→0  相似文献   

11.
马克思在《数学手稿》中指出:微分是“扬弃了的”或“消失了的”差值,并且直截了当地写上微分“dx=0”,“dy=0”。这是对微分概念最精辟、最辩证的表述。旧教材却对微分概念作了形而上学的歪曲的描述。它把微分定义为:“设函数y=f(x)在一点x=x_0附近有意义,且存在一常数A,使对于x的改变量△x与y的相应改变量△y=f(x_0 △x)-f(x_0)之间有关系式△y=A·△x O(△x),其中A是与△x无关的常数,则称函数y=f(x)在点x_0处是可微的,而△y的主要部分A·△x叫做函数在x_0点的微分,用符号dy或df(x)记之,则dy=A·△x或df(x)=A·△x”。并且还做了一个归纳:“简单说来,微分就是函数增量的线性主部,而当△x很小时,dy≈△y”。  相似文献   

12.
设X,Y为(B)型空间,研究非线性完全连续作用于X带参数y的方程Ф_yx=x—F(x,y)=0设Ф_y0=0(有时φ_y0=0)。若F对x在x=0可微,则Ф_yx=x-F′(0,y)x T(x,y)=0 表Ω为正则值集合,Π为奇异值集合,则i[Ф_y,0]当y在Ω的连通区域D时为常数。设A=F′(0,y_0),y_0∈ΠX_1真为相应于固有值1的固有子空间,由完全连续线性算子理论,有X=X_1 X_2,相应一对投影P_1P_2且存在有逆线性算子R使R(I—A)x=x_2。本文得到如下结论,若y_0∈Πh=y-y_0。足够小F′(0,y)=A—S(h)。 y∈Ω充要条件为Ю_y=P_1RS(h)P_1—P_1RS(h)P_2[P_2 P_2RS(h)P_2]~(-1)P_2RS(h)P_1在X_1中有逆,此时i[Ф_y,0]=i[R,0]i[Ю_y,0]_(X_1)。 x=0是Ф_(y_0)x的孤立零点之充要条件为x_1=0是L_(x_1)=P_1RT(x_1 f(x_1,y_0)y_0)=0的孤立零点,其中x_2=f(x_1,y_0)是P_2x P_2RT(x_1 x_2,y_0)之解。此时i[Ф_(y_0),0]=i[R,0]i[L,0]X_1。最后,我们应用上述结果到非线性方程的分枝解问題。  相似文献   

13.
当我们说二元函数极限(?)时,必须明确点p(x,y)在平面上是以任何方式趋于点P_0(a,b),因此,要证明(?)不存在,常可寻找一个经过点P_0的、含参数k的曲线族,使点P沿其中不同的曲线趋于点P_0时,f(p)有不同的极限.例如,在证明(?)不存在时,可用曲线族,y=kx,而在证明(?)不存在时,则用曲线族y=kx~2.我们自然要问:上述曲线族是怎样找出来的?还有没有其他曲线族也满足要求?上述曲线族是最简单的吗?由于微分方程是探求平面曲线的工具,本文就使用微分方程来解决这些问题.当然我们只能在有若干阶连续导数的曲线中讨论.  相似文献   

14.
本文得到了以δ-样条逼近δ-函数的普遍结果。它阐明在[1]文意义下的逼近与节点和f(x)的间断点的相对位置有关。其主要结果如下。设函数f(x)连续于[a,b]或只有第一类间断点。若把f(x)以b-a为周期延拓到(-∞,∞)则其中,当x_0→x,…,x_0→x时 a_i→0 (i=1,2,3)  相似文献   

15.
1 问题的引出一些微积分和高等数学的教科书中,讨论二元函数极限时都以函数■作为极限不存的例子,此函数在原点(0,0)无极限,因为当点M(x,y)沿着直线y=kx  相似文献   

16.
万为国 《科技信息》2013,(25):153-154
计算多元函数的极限时,许多情况下可以应用等价无穷小、两边夹法则等方法。如果多元函数的极限不存在,经常讨论动点以不同路径趋于定点,而函数以不同的趋势变化,得出极限不存在的结论。经常选取的路径有y=kx,或者计算两个不相等的二次极限等。在计算多元函数的极限时,由于动点的变化方向、方式复杂多样,选取不同的路径用来分析函数的不同变化趋势,或者计算两个不相等的二次极限,能否得出多元函数极限不存在的结论,与聚点邻域的形状有关。本文对计算多元函数极限的几个问题作了初步的探讨。  相似文献   

17.
命题:设A是适拟微分算子,K_A∈C~∞(X×X),则对任意的u∈D′_0,有A_u∈C~∞(X) 证法一:首先我们来证明对u∈D′_0(X),函数 f(x)=是在C~∞(X)中的。显然对每个固定的x,有K_A(x,y)∈C_0~∞(X)(视为y的函数),故f(x)确为通常意义下的函数。而且当x→x_0。时,将x看成参数的y的函数K_A(x,y)的支集落在一个共同的紧集之内,且在此紧集上对x一致地有D_y~mK_A(x,y)→D_y~aK_A(x,y)即在D_0(x)的拓扑下有K_A(x,y)→K_A(x,y),从而有f(x)→f(x),  相似文献   

18.
本文将要用到〔3〕中引入的若干概念,为叙述方便,简列于后。集X 到〔0,1〕的一个函数A 称为X 的一个fuzzy 子集;X_1={x∈X|A(x)>0)称为A 的承集。x_λ称为X 上的fuzzy 点;若x_λ(a)={λ当a=x 0 当a≠x a∈X;点x 叫它的承点。x_λ∈A 即0<λ≤A(x);x_λ=y_μ即x=y 且λ=μ;x_λ(?)y_μ即x=y 且λ≤μ。“(?)”是fuzzy 子集A 上的运算:(?)a_λ,b_μ∈A,存在唯一c、∈A,记作a_λ(?)b_μ=c_(?),使当a_(λ′)(?)a_λ,b_(μ′)(?)b_μ时,a_(λ′)(?)b_(μ′)(?)a_λ(?)b_μ,称“(?)”为A 的广义积。当v=min(λ,μ)时,记a_λ(?)b_μ=c_ν为a_λb_μ=c_ν,称为A 的狭隘积,以下仅讨论这种狭隘积。  相似文献   

19.
设有界函数f(x)在(a,b)上Riemann可积,对f(x)的不连续点,Φ(x)=integral from n=a to x(t)dt的可导性如何呢?本文指出:设X_0是f(x)在(a,b)上的不连续点,f(x)在(a,b)上的连续点组成的集合为D、x→x_0存在,则φ(X_O)存在且等于X→X_0.但逆命题不成立。  相似文献   

20.
通过实践的摸索,并根据文[1]的提示,我们应用数论的方法,在选点方法、试验次数、初始试验点不事先知道的情况下证明黄金分割法的最优性。§1 基本概念和定义定义1 若函数y(x)在区间[a,b]上只有一个最大值点x,在点x左侧函数严格增加,在最大值点的右侧,函数严格减少,则称函数y(x)在区间[a,b]上为单峰的。不失一般性,今后只研究具有最大值的单峰函数。单峰函数有如下性质:y=y(x)是[a,b]上的单峰函数,x_1和x_2(x_1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号