首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 750 毫秒
1.
针对浅埋黄土隧道在开挖过程中发生的拱顶过量沉降问题,采用颗粒离散单元法模拟了不同开挖方法和加固措施对围岩稳定和变形的影响,分析了6种工况的围岩压力分布和位移发展情况,讨论了开挖方法和加固措施对隧道围岩稳定的影响.模拟结果显示,隧道拱肩和拱脚应力集中处水平位移较大,拱部和边墙开挖为黄土隧道留核心开挖施工中的关键工序,施工中宜及早支护避免隧道发生过大变形.浅埋黄土隧道拱顶下沉量远大于周边收敛;对于相同的支护形式,留核心土下部全断面开挖法产生的位移总量约为留核心土下半断面分部开挖法的1.2倍;对于相同的开挖方法,无超前注浆支护产生的位移总量约为有超前支护的1.5倍;而有无系统锚杆的隧道围岩变形量基本相同.研究表明,浅埋黄土隧道可采取超前导管注浆减小隧道开挖变形,而系统锚杆由于支护效果不明显可考虑取消.  相似文献   

2.
四车道大跨度浅埋黄土隧道开挖方案数值分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为保证四车道浅埋黄土隧道的施工安全,优化施工方案,采用数值模拟手段对大断面黄土隧道开挖常用的三台阶七步开挖、中隔壁、交叉中隔壁和双侧壁4种方法进行系统的对比和分析。结果表明:(1)四车道浅埋黄土隧道与普通的两车道隧道变形存在较大差异,拱顶下沉显著增大,水平收敛较小且拱脚有向外挤出的趋势,故变形监测应以拱顶下沉为主;(2)地层竖向位移随深度的增加线性增大,距拱顶4m范围内呈指数型增大,且与洞周形成塑性区有关;(3)围岩应力均未超过其强度极限,初期支护应力较大,起到了主动承载和控制围岩松弛的作用,其与围岩共同承担大部分荷载,二次衬砌应力普遍较小,可为隧道结构提供安全储备;(4)变形控制要求严格的地区推荐使用双侧壁法,允许较大变形的情况优先采用三台阶七步开挖法。结论可为黄土隧道设计和施工方法的选择提供理论依据。  相似文献   

3.
为了探究黄土隧道变形特性,基于有限元强度折减法,建立了隧道在不同埋深条件下的有限元模型,进行了隧道穿越青海东部地区黄土地层时的极限位移值研究.结果表明:在同一埋深条件下,随着折减系数的增大,隧道洞周的变形不断增大,当达到某一临界值时,位移出现突变;隧道埋深10 m,其安全系数为2.6,拱顶沉降极限位移值为10.3 mm,墙腰水平收敛极限值为14.2 mm;隧道埋深30 m,其安全系数为2.2,拱顶沉降极限位移值为26.0 mm,墙腰水平收敛极限值为46.4 mm;隧道埋深50 m,其安全系数为2.0,拱顶沉降极限位移值为36.8 mm,墙腰水平收敛极限值为52.7 mm.结论可为有类似工程地质条件隧道设计、施工、监测提供参考.  相似文献   

4.
通过对河惠莞高速公路佳龙嶂隧道冲沟浅埋段在隧道成型后围岩的位移进行现场监测,分析浅埋隧道在开挖过程中围岩的变形情况.结果表明:浅埋隧道开挖后围岩的变形通常可分为加速变形、等速变形和缓慢变形3个阶段;掌子面的推进将对后方约40m范围内的周边围岩变形产生持续影响.  相似文献   

5.
以重庆铁路枢纽东环线新白杨湾下穿高速公路隧道工程为依托,研究了浅埋隧道大管幕支护力学特性及施工控制技术。采用有限元分析软件MIDAS-GTS NX建立隧道施工模型,分析无超前支护、管棚超前支护和大管幕超前支护3种工况下地表沉降、围岩变形以及初支内力等力学特性的变化规律。研究结果表明:无超前支护下开挖完成地表最终沉降为30.01 mm,管棚超前支护和大管幕超前支护下地表沉降分别减小了49.28%和62.08%。就控制围岩变形效果而言,管棚超前支护下拱顶沉降和水平位移分别减小了49.32%和38.20%,大管幕超前支护下拱顶沉降和水平位移分别减小了62.03%和40.03%。施工完成后,无超前支护、管棚超前支护和大管幕超前支护下的初次衬砌最大压应力分别为14.67 MPa、6.58 MPa和6.13 MPa,无超前支护下最大压应力超过规范允许值(13.5 MPa)。  相似文献   

6.
管棚注浆法是浅埋地下工程通用的一种超前支护技术.为分析管棚注浆支护法在浅埋松软地层开挖中的支护效果,以某三孔框构式引水隧道洞口段浅埋松软地层为例,通过对管棚应变变化情况进行监测研究和对隧道施工过程中引起地表沉降进行现场监测,利用ADINA软件对不同支护条件下隧道开挖过程所产生地表沉降值进行数值模拟.以数值试验的定量分析作为理论基础,通过监测管棚形变和地表沉降数值变化,并对两者结果进行对比分析.结果表明,管棚注浆支护设计在浅埋松软地层开挖中应用效果显著,管棚注浆法能够在对隧道围岩进行超前预加固时形成一圈防护层,能分担部分隧道上覆岩层应力,从而较好地调节围岩应力重分布,同时又能有效地抑制围岩的变形.  相似文献   

7.
为研究超大断面浅埋黄土隧道大变形控制技术及效果,依托隧道大变形事故案例,对隧道围岩变形破坏特征及原因进行分析,结合隧道地质条件及围岩特性,提出了合理有效的围岩变形控制技术及施工工艺,并应用数值模拟和现场测试对3种加固措施工况下的变形及应力进行分析。研究结果表明:超大断面浅埋黄土隧道围岩变形主要表现为前期变形速率大,变形持续时间长,累计变形量大,拱顶最大累计沉降为124.3 cm,围岩变形受开挖扰动和持续降雨影响显著;采取临时套拱加固有效抑制变形的持续发展,避免塌方事故的发生,而径向注浆加固和强化支护参数为后续顺利完成大变形段换拱施工提供安全保障;浅埋偏压地段采用地表超前预注浆技术,有效地改善上覆围岩特性,后续施工累计变形均在预留变形量范围内,确保了施工安全和进度。  相似文献   

8.
不同埋深下暗挖隧道施工的地层响应   总被引:3,自引:0,他引:3  
采用实测统计和数值模拟方法,对北京地铁区间暗挖隧道开挖后不同埋深下的地层应力、塑性区分布及地层变形3个方面进行分析研究.结果表明:1)隧道开挖后洞周切向应力升高区随埋深增大而向围岩深部转移,埋深达到20 m后,应力升高区的转移减缓;2)随埋深的增大,洞周塑性区与地表塑性区由完全贯通变为逐渐分离,地表塑性区的范围逐渐减小,但洞周塑性区的范围变化不大,而塑性区以外的弹性区范围增大;3)埋深达到12 m时,地中沉降曲线出现拐点,拐点与洞顶的距离随埋深的增大而增大,埋深达到20 m后,曲线拐点基本稳定在洞顶上方10 m处;4)计算结果与实测统计规律基本一致,最大地表沉降值随着埋深的增大而减小,但减小的幅度随着埋深的增大而逐渐减小.  相似文献   

9.
浅埋隧道开挖不可避免地会引起地层变形和地表沉降,沉降过大时对地上结构物的安全带来威胁。本文运用有限元数值模型分析了浅埋隧道开挖对围岩变形以及地表沉降的影响作用。并讨论了不同的支护时机和初期支护强度对围岩的沉降变形的影响作用。  相似文献   

10.
通过有限元数值模拟软件模拟了浅埋偏压小净距隧道在不同间距和不同埋深条件下的开挖,研究了隧道间距和埋深对隧道围岩变形的影响。结果表明:隧道的最大变形出现在拱顶,但并不在拱顶的正中间,而是中间偏右侧;右侧隧道的拱顶、拱底和侧墙等部位的位移均比左侧隧道的大;随着隧道间距的增大,地表沉降值不断减小,而拱顶下沉累计沉降量先减小后增大;随着隧道埋深的增大,拱顶沉降量增大,地表沉降累计值减小。  相似文献   

11.
为研究高地应力软岩隧道超前平行导洞开挖对主洞影响,依托玉龙雪山隧道工程,基于现场长期监测数据,结合有限差分程序FLAC3D建立数值分析模型,研究超前平导对主洞围岩应力、围岩位移和塑性区分布的影响,明确主洞与平导间最优间距。研究结果表明:主洞开挖过程中,当掌子面与监测面距离为3.63倍主洞洞宽时,监测面拱顶沉降、上收敛、中收敛和下收敛值占最终变形值的80%以上,围岩变形稳定后上收敛值和中收敛值均大于拱顶沉降;平导超前开挖可有效改善主洞围岩应力环境,主洞与平导间距较大时,围岩应力改善效果不佳,随着二者间距逐渐减小,围岩应力改善效果逐渐增强,但主洞与平导间距过小时,二者开挖产生的塑性区会贯通,综合考虑,确定主洞与导洞最优间距为3.5倍导洞宽度;主洞拱顶沉降值和拱底隆起值随着主洞与平导间距的减小而增大,左右拱腰水平位移值随着主洞与平导间距的减小先减小后增大,当二者间距由5.0D减小至3.0D时,拱顶沉降值和拱底隆起值分别从-0.598m和0.426m增加至-0.679m和0.514m。  相似文献   

12.
王乃勇 《科学技术与工程》2021,21(32):13919-13925
为研究盾构隧道斜交下穿施工对既有高速公路工程的影响,以某城市轨道交通盾构下穿工程为背景,采用FLAC3D进行盾构施工三维数值模拟,分析了双线盾构施工对公路路面、路堑边坡的影响规律,评价了施工方案的安全性。结果表明:盾构斜交下穿时,路面沉降呈现三维非对称特征,在公路横断面方向,沉降曲线呈现左低右高的线性规律,在公路纵断面方向,沉降曲线呈现左高右低的不对称“V”形,且横断面方向沉降总是大于纵向沉降;边坡竖向位移大于水平位移,以沉降变形为主,开挖面距边坡坡脚水平距离约为2倍洞径时,边坡位移显著增加,该区段为施工强影响区;双线盾构贯通后,路面最大沉降值为3.15mm,纵向沉降变化率为0.0094% ,边坡最大水平位移为1.2mm,三者均小于变形控制标准,公路路基、边坡无塑性区出现,处于弹性状态,盾构下穿施工对既有高速公路影响较小。研究结果可为类似盾构下穿工程提供参考。  相似文献   

13.
为研究松散堆积体隧道施工引起围岩空间位移的变化,采用弹塑性非线性有限元法对隧道开挖过程进行仿真模拟,将空间位移分为地表沉降、周边围岩位移和掌子面挤出变形3部分进行分析,并与既有理论和现场测试数据进行对比。数值计算结果表明:隧道开挖引起的围岩变形具有明显的三维特性,掌子面前后方影响范围均约为20m,横向沉降槽呈明显的"深沟"形,沉降槽宽度较小,与塞形曲线拟合度最高;周边围岩拱部下沉和隧底隆起范围与量值均较大,水平收敛较小,下台阶支护封闭成环后变形趋于稳定;上台阶掌子面挤出变形呈中间大、周围小的"圆形放射状",下台阶掌子面挤出变形总体较小;与现场测试值相比,拱顶下沉和净空收敛偏大,地表沉降两者基本一致。  相似文献   

14.
高地应力破碎围岩地层在开挖隧道过程中极易发生大变形、钢架扭曲、局部垮塌等灾害。以天平铁路关山隧道为依托,通过监测两个试验段内的围岩压力、初期支护受力与变形、二次衬砌混凝土应力的分布特征,来探讨高地应力破碎围岩地层中不同断面形式和支护参数情况下隧道支护结构的变形与受力特征。结果表明:在以水平地应力为主的破碎围岩地层中,隧道开挖引起的变形以边墙水平收敛为主,拱顶沉降次之;高边墙小曲率断面形式的单线铁路隧道受力和变形均较大,而增大边墙曲率可有效抑制隧道开挖引起的变形,使支护结构受力更为均匀,受力状态明显改善。研究可为高地应力破碎围岩地层中隧道设计提供一定的参考。  相似文献   

15.
针对台凹型活动地裂缝正交区间隧道,通过有限差分数值方法模拟地裂缝区间隧道的开挖施工、分缝衬砌结构与地裂缝上下盘之间相对错动,从地表和衬砌的沉降位移、围岩位移场、围岩土压力以及衬砌结构内力方面分析了隧道结构与围岩的变化特征.结果表明:台凹型活动地裂缝不均匀变形主要发生在上盘内地裂缝一定范围的地层内;分缝衬砌结构端部的拱顶土压力呈现出集中增大和减小的变化特征,上盘内地裂缝附近仰拱底的土压力出现松弛;变形缝两侧衬砌结构的端部出现轴向应力集中现象.分缝衬砌结构一方面能够适应地裂缝错动位移,避免结构内力过大而引起强度破坏;另一方面,能够抑制地层的不均匀沉降变形,使得地裂缝处变形缝两侧衬砌结构的相对位移减小,并改善地裂缝区间隧道的运行条件.  相似文献   

16.
以大连地铁促进路站至春光街站区间45°交叉隧道建设工程为背景,采用有限差分软件FLAC3D模拟0°~90°7种不同横通隧道开挖对主隧道的扰动情况;并对主隧道锐角侧与钝角侧地表沉降进行对比分析,得出不同交叉角度时隧道的变形规律。结果表明:随着横通隧道开挖角度的减少,主隧道锐角侧的变形量逐渐变大,钝角侧的变形量逐渐减少;主隧道锐角侧曲线的波动性较大,钝角侧曲线则相对平缓;主隧道拱顶沉降最大值并非出现在交叉区中点,而是出现在主隧道开挖方向向前一定距离,并偏向横通隧道一侧。  相似文献   

17.
为研究分离岛式车站交叉洞群的周边环境效应,以广州市某暗挖地铁车站为工程背景,采用数值模拟的分析方法,建立了正线隧道、联络通道和站台横通道的多洞室数值计算模型,同时考虑左右线隧道穿越不同岩性的地层,有限元模型地层为不均匀地层。通过数值模拟研究了隧道交叉洞群施工引起的地表沉降、围岩应力应变特征、支护变形受荷规律等,并将模拟结果与相应的现场监测数据对比分析。计算结果表明:中洞施工会引起围岩应力场位移场重分布,上覆围岩会向两侧滑动,造成洞间土体呈受压状态,侧洞会向两侧位移;支护结构最大应力值出现在隧道与联络通道的接口处,并且隧道支护结构应力值大小与距交叉段远近成负相关,离交叉段越远,支护应力值越小。研究成果为今后类似工程条件下城市地铁隧道施工提供参考。  相似文献   

18.
为研究桥梁桩基施工引起地层蠕变行为对邻近地铁隧道安全运营的影响,依托实体工程,采用卸荷条件下黏土蠕变特性试验确定了隧道周围土体的蠕变模型,通过数值模拟手段(FLAC3D软件)与现场监测相结合的方法,分析了桩基开挖期间地铁隧道的竖向位移、水平位移和应力分布状态。结果表明:广义Kelvin本构模型能够较为准确的描述黏土体开挖卸荷时的蠕变效应;桩基开挖后,邻近地铁隧道衬砌位移不断增大,随后进入稳定状态;随着桩基开挖数量的增加,地铁隧道竖向位移和水平位移总体表现为下沉和向外收敛趋势;桩-隧最小净距越小,桩基施工对隧道影响越大,采用隧道双侧布桩的施工方式,能够有效降低桩基开挖时隧道拱腰的累计水平位移,有利于地铁隧道的安全稳定运营。  相似文献   

19.
作为一种大跨径地下结构形式连拱隧道结构复杂,无中导洞法能在提高施工速度的基础上降低中隔墙渗漏水。为研究连拱隧道无中导洞法施工活动对隧道先后行洞的影响程度,以陈家滩隧道为研究对象通过数值模拟,研究了不同间距下先后行洞的影响范围、先后行洞的影响程度以及中隔墙的倾覆趋势。结果表明:当先行洞开挖至控制截面5m范围内对围岩的影响最大,其围岩位移释放系数增量达到了40%以上;超过控制截面10 m时其围岩释放系数达到了93%以上,影响程度较小;超过20 m时影响程度可以忽略。当先后行洞纵向间距大于35 m时影响程度S值接近10%,纵向间距大于40 m时S值小于10%。从中隔墙的倾覆程度来看当先行洞开挖完成时,中隔墙的倾斜程度达到最大,倾斜角约为3.28×10-4;而纵向间距大于30 m时倾斜角差值为0.351×10-4,此时中隔墙倾斜程度较大极差较小,有利于中隔墙受力。故先后行洞开挖掌子面纵向间距建议控制在30 m~40 m左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号