首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
针对林区卫星信号缺失、跟踪定位困难的问题,提出了基于智能手机传感器的林区行人定位算法(forest-pedestrian location,FPL)。算法在行人航位推算算法(pedestrian dead reckoning,PDR)基础上进行改进:采用扩展卡尔曼滤波(extended Kalman filter, EKF)与卡尔曼滤波(Kalman filter, KF)融合算法对磁力计、加速度计及陀螺仪输出进行多次融合,以提高方位角测量精度;随后,使用Savitzky-Golay(S-G)滤波处理方位角测量值,以提高PDR算法中方位角的估计精度;引入K邻近(K-nearest neighbor, KNN)算法估计步长,将拟合显式步长函数问题转化为“懒惰学习”问题;使用差分气压测高法求解行人高程信息,从而获取行人在林区内的3维定位信息。实验结果表明,该算法可以提高方位角及步长的估计精度,同时可以增加精准的高程定位信息,整体误差控制在5%以内,可以满足林区无信号条件下的定位需求。  相似文献   

2.
以智能手机为用户端平台,利用行人航迹推算(pedestrian dead reckoning,PDR)改进算法和气压测高原理设计了三维多传感器融合定位的扩展卡尔曼滤波器,基于Android操作系统开发了手机传感器融合的室内三维定位程序。最后,利用中国矿业大学室内外无缝定位试验场进行了定位算法性能评估。结果表明,三维融合定位方法能有效抑制漂移误差,定位精度和可靠性能够满足室内应用环境的要求,且定位精度优于WiFi方法和常规PDR方法。  相似文献   

3.
近年来,基于智能手机的行人航位推算技术(pedestrian dead reckoning , PDR)、Wi-Fi以及多种融合室内定位技术得到了较快发展,与此同时,其存在对定位环境要求较高,定位结果偏差较大等缺点。为解决这一问题,我们在传统PDR基础上提出了一种结合地标库匹配的改进室内定位方法——地标辅助PDR定位算法(Landmark-aided PDR algorithm, LaPDR)。首先,将在传感器实时数据上识别出的特定地理位置(如墙,门,拐角,Wi-Fi接入点等)当做地标。然后,针对实验环境建立相应的地标库,目的是纠正传统PDR定位算法由于传感器安装精度较低及定位时间过长而产生的漂移。实验结果表明与传统PDR相比,地标辅助PDR定位精度明显提高,系统定位误差基本控制在1.5 m以内。  相似文献   

4.
针对行人航位推算(pedestrian dead reckoning,PDR)定位存在误差累积和智能手机内置传感器精度不高的问题,采用PDR结合地磁的方法进行室内定位研究,提出一种改进的基于PDR的后向地磁匹配算法.在构建地磁基准库阶段,使用克里金插值算法有效减少数据采集所耗费的大量时间并构建出双分辨率地磁基准库.在地磁匹配阶段,改进了基于动态时间规整(dynamic time warping,DTW)的后向地磁匹配算法,改进后的算法避免传统DTW地磁匹配需要全局搜索地磁序列的缺点,在保证定位精度的前提下,增强了定位实时性.实验结果表明,本文算法最大定位误差小于1.5m,可以满足普通室内定位需求.  相似文献   

5.
针对单一定位系统无法得到连续、稳定可靠的导航信息的问题,将全球卫星导航系统(GNSS)与捷联惯性导航系统(SINS)进行组合,并利用扩展卡尔曼滤波(EKF)算法对这两种导航系统的定位信息进行融合,以获得更加稳定、精确的定位结果。将GNSS与SINS组合,可以弥补GNSS卫星信号失锁、数据更新频率低、无法获得姿态信息以及SINS定位误差累积等单导航系统定位的不足。通过车载实验采集定位数据,并分别进行SINS单独导航及GNSS/SINS组合导航解算,由实验结果可以看出,与SINS单独导航相比,GNSS/SINS组合导航系统的定位误差能快速收敛,并保持较高的精度,其中位置误差精度达到厘米级,速度的最大误差大约在0.1m·s-1以内,姿态的最大误差大约在0.2°以内。  相似文献   

6.
提出一种利用iBeacon技术辅助PDR的室内定位方法.采用粒子滤波器将PDR和iBeacon技术定位信息融合,从而确定出用户的位置,以此减少PDR随距离增加而产生的累积误差.此外,基于iBeacon在线步长调整模型在一定程度上减少了步长不正确带来的误差.实验结果显示,提出的方法能够有效克服PDR产生的累积误差,有效提升了定位的鲁棒性和精度.  相似文献   

7.
由于GPS信号在室内环境下不能有效地实现定位和导航,因此精确的室内定位技术仍然是一个十分活跃的研究课题。行人航迹推算(PDR)可以使用智能手机的自带传感器实现室内连续定位。然而,它会随着行走距离的变长产生很大的累计误差。因此,提出一种基于iBeacon和手机MEMS相融合的精确的室内定位方法。在行走路径上加入iBeacon信标和二维码信标,系统自适应地选择相应的校正模式纠正PDR算法产生的累计误差。最后完成了基于Android平台的室内定位软件的开发。实验结果显示,文中方法的定位结果与PDR定位结果相比较,定位精度有了显著的提高,融合定位的平均误差在2m以内,定位精度满足项目需要。  相似文献   

8.
在室内行人定位系统中,行人的高程定位精度关系到整个定位系统的可靠性。本文提出一种基于腰间传感器的室内行人高程估计算法。首先利用支持向量机识别行人上楼下楼动作,针对行人的运动状态采用自适应的高程估计算法。针对气压计测量值易受环境影响的问题,采用了基于EKF融合气压和加速度的高度估计算法,提高了高度估计算法的稳定性。经实验验证,当室内人员进行平地走、上楼等一连串动作后,基于差分气压测高法计算的高度误差为9.92%,基于加速度估计的行人高度误差为9.52%,EKF融合后定位误差下降到2.32%,提高了高程估计的精度。  相似文献   

9.
在室内行人定位系统中,行人的高程定位精度关系到整个定位系统的可靠性。提出一种基于腰间传感器的室内行人高程估计算法。首先利用支持向量机识别行人上楼下楼动作,针对行人的运动状态采用自适应的高程估计算法。针对气压计测量值易受环境影响的问题,采用了基于EKF融合气压和加速度的高度估计算法,提高了高度估计算法的稳定性。经实验验证,当室内人员进行平地走、上楼等一连串动作后,基于差分气压测高法计算的高度误差为9.92%,基于加速度估计的行人高度误差为9.52%,EKF融合后定位误差下降到2.32%,提高了高程估计的精度。  相似文献   

10.
联合LiDAR和多光谱数据森林地上生物量反演研究   总被引:1,自引:0,他引:1  
【目的】森林地上生物量的准确估测对于实时掌握全球碳储量变化及应对气候变化有着重要的意义。组合多种遥感数据特征优选,分类建模反演森林地上生物量,是提高森林地上生物量精度的有效方法。【方法】以根河市大兴安岭生态观测站寒温带天然林为研究对象,以机载激光雷达(LiDAR)、Landsat8 OLI两种遥感数据源结合55块地面调查数据,采用偏最小二乘算法优化筛选变量,再以线性多元逐步回归和快速迭代特征选择的最近邻算法(KNN-FIFS)构建模型,在两种数据源的不同组合方式下进行森林地上生物量反演。【结果】①基于线性多元逐步回归模型下的单一LiDAR数据反演精度决定系数(R2)为 0.76,均方根误差(RMSE)为 21.78 t/hm2;单一Landsat8 OLI数据的反演精度R2为 0.24,RMSE为39.27 t/hm2;LiDAR和Landsat8 OLI联合反演精度R2 为 0.84,RMSE为18.16 t/hm2;②基于KNN-FIFS模型下的单一LiDAR数据反演精度R2为 0.74,RMSE为23.83 t/hm2;单一Landsat8 OLI数据的反演精度R2为0.60,RMSE为 29.63 t/hm2;LiDAR和Landsat8 OLI联合反演精度R2为0.80,RMSE为21.15 t/hm2。【结论】①特征优选支持下的3种组合方式中,LiDAR和Landsat8 OLI两种数据的组合在两种模型中反演精度均最高,其中线性多元逐步回归模型的反演精度最高,说明LiDAR和Landsat8 OLI数据组合,激光雷达与光学数据优势特征互补,协同反演可有效提高森林地上生物量的反演精度;②单一数据源反演森林地上生物量精度中,LiDAR数据比Landsat8 OLI数据在两种模型反演精度中均较高,这与LiDAR数据空间分辨高、可获得垂直结构特征参数有关。  相似文献   

11.
在室内行人定位中,行人航位推算 (Pedestrian Dead Reckoning, PDR)由于不需要外部辅助信息,而被广泛应用。针对传统室内PDR存在步长局限性等问题,提出了一种基于微机械电子系统(Micro Electro Mechanical System, MEMS)传感器的行人航位自适应拟合推算算法。该算法选用六位置法和卡尔曼滤波器(Kalman Filter, KF)作为对加速度计和陀螺仪原始数据误差处理方案。通过过零检测和步态短时不变性计算脚的运动状态,并结合加速度自适应拟合行进距离,最后利用位置推算解算行人的运动轨迹。仿真结果表明,该算法在95 m运动距离内,最大误差不超1.5 m,具有良好精确性和灵活性,适用于实际的室内行人定位。  相似文献   

12.
行人航迹推算(pedestrian dead reckoning, PDR)作为一种新兴的导航定位方法, 因其不易受外界环境因素影响而受到广泛关注. 针对室内行人航迹推算, 采集并分析了微机电惯性测量单元(micro-electro-mechanical system-inertial measurement unit, MEMS-IMU)数据, 设计了运动分类的区间对称步频检测, 并建立了步频调节的步长估计模型, 最后提出了运动分类步频调节的MEMS-IMU室内行人航迹推算, 从而实现较精准的定位. 针对不同个体, 对步频调节的步长估计模型进行个性化标定, 以进一步提高室内行人航迹推算性能. 验证结果表明: 与传统峰值非线性方法相比, 运动分类步频调节的MEMS-IMU室内行人航迹推算的定位误差降低了32.6%, 使短距离室内行人航迹推算在无其他定位技术支持的情况下具有较高精度.  相似文献   

13.
针对W(WLAN,Wireless Local Area Network)、R(RFID,Radio Frequency Identification)、V(Video)技术在室内定位的特点,提出了基于WRV信息融合的机器人定位方法。以概率法为基础,进行了基于Kalman滤波的WLAN机器人定位实验;以增加移动误差补偿的极大似然估计定位算法为基础,进行了基于Kalman滤波的RFID机器人定位实验;以SIFT算法为基础,进行了机器人定位实验;最后研究了机器人多信息融合定位算法并进行了实验。移动机器人定位实验表明:机器人多信息融合定位平均定位偏差为0.381m,减少了WLAN、RFID及视觉系统单独定位时的偏差,定位精度上有了明显的提高,可以较好地满足室内移动机器人的定位要求。  相似文献   

14.
针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information, PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统基于CSI幅值的指纹定位基础上增加相位信息对定位结果进行修正,之后对RSSI指纹和PC-CSI指纹的定位结果加权重定位。实验结果表明,提出的加权融合指纹定位算法与基于CSI的主动定位算法相比,平均定位误差(mean position error,MPE)降低了36.2%,能满足室内定位需求。  相似文献   

15.
在结构化环境中,针对室内机器人导航对精度和实时性的要求,在一种新型红外路标定位方法的基础上,为满足全局导航的需要并简化硬件结构,提出一种融合航迹推演的红外路标室内定位方法,将单个大功率红外发射管作为路标,移动机器人上的红外摄像头作为接收传感器,融合采用改进的交互多模型无迹卡尔曼滤波(interacting multiple models unscented Kalman filter,IMM-UKF)算法.将融合航迹推演的红外路标室内定位方法和一般的定位方法做了比较,并将融合所采用改进的IMM-UKF算法与一般的融合算法做了比较.实验结果表明,提出的基于改进IMM-UKF算法的融合航迹推演的红外路标室内定位方法获得了比一般的定位方法更快的定位速度和更高的定位精度,且改进IMM-UKF算法比一般融合算法获得的定位精度更高.  相似文献   

16.
Wi-Fi定位由于不需要额外的基础设施和专门的硬件设备,在室内定位领域有重要应用,不可预测的环境变化引起的接收信号强度(received signal strength,RSS)波动是导致Wi-Fi定位系统精度低的主要原因.提出一种基于测距的普适室内定位方法,使用快速数据聚类训练原始RSS数据,以确保RSS数据的稳定性和有效性;在此基础上,针对提取的RSS信号进行拟合,建立一种确定性信号传播模型,利用天牛须优化方法实现位置求解的高效寻优.通过仿真结果分析,提出的CB-DSPM(clustering by fast search and find of density peaks beetle antennae search-de-terministic signal propagation model)定位算法的误差在1.5 m左右,且迭代10~30次之后基本可以收敛到最优位置.  相似文献   

17.
 作为一种全新的室内定位技术,将无线路由器的无线信号强度(Receive Signal Strength Indicator,RSSI)值应用在室内移动机器人定位领域。为实现室内移动机器人的定位,提出利用无线信号强度值定位的概率法,根据无线信号强度值在室内环境中的分布特点,分析概率法定位原理,开发一种基于VC++6.0平台室内移动机器人定位系统,该定位系统包括硬件平台和软件平台,并进行移动机器人定位实验,得到较好的定位实验结果。同时,分析机器人定位精度,确定影响定位精度的因素主要包括障碍物、人体、温度和湿度等。定位实验结果表明,在结构化环境下机器人定位的最大偏差为1.2758m,最小定位偏差为0.3007m,可以较好地满足室内移动机器人的定位要求。  相似文献   

18.
EKF定位跟踪算法研究   总被引:9,自引:3,他引:6  
为了处理机动目标跟踪过程中的非线性问题,提出了一种基于运动模型的扩展卡尔曼滤波(EKF)算法,该算法精度可以逼近最优估计,适用于任何可用状态空间模型表示的非线性系统。通过仿真表明利用运动模型的扩展卡尔曼滤波方法可以有效地抑制非视距误差(NLOS)对定位精度的影响,从而得到更高的定位跟踪效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号