首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
基于TSMC 90nm CMOS工艺,设计实现K波段片上集成CMOS接收前端。接收前端由两级差分共源共栅结构低噪声放大器、双平衡吉尔伯特单元结构下变频混频器组成。射频输入、本振输入以及模块间采用片上巴伦进行匹配。测试结果表明,在射频输入频率23.2GHz时,转换增益为27.6dB,噪声系数为3.8dB,端口隔离性能良好,在电源电压为1.2V下,功耗为35mW,芯片面积为1.45×0.60mm2。   相似文献   

2.
设计了一种应用于X波段本振移相的新型矢量合成移相器,该新型矢量合成移相器主要由4个3bit的子移相器组成,可以实现5bit的移相精度.该移相器降低了对可变增益放大器(Variable Gain Amplifier,VGA)的精度要求.可变增益放大器的可变增益通过一组开关控制增益单元来实现,从而避免了传统正交矢量合成移相器中VGA偏置电流改变造成的线性度波动和漏源波动问题,故应用于本振移相时可以实现较小的移相增益误差和相位误差.为了验证该移相器的本振移相性能,设计了一个混频器作为测试电路.本设计采用0.13μm CMOS工艺实现,电源电压为1.2V.测试结果表明,在9~12GHz内,混频器在本振移相器驱动下的平均转换增益为-0.5~7dB,移相器的移相精度为5bit,均方根增益误差最大值为0.8dB,均方根相位误差最大值为4°.直流功耗为40mW.  相似文献   

3.
文章利用有损匹配的方法设计了一种覆盖X、Ku波段的宽带低噪声放大器,其工作频率为8~18 GHz,带内功率增益大于32 dB,增益平坦度小于3 dB,输入输出端口的回波损耗S11和S22均优于-7 dB,噪声系数小于2.8 dB,最大输出功率为16 dBm,且具有工作频带宽、输入输出匹配结构简单的特点.  相似文献   

4.
基于130 nm BiCMOS(Bipolar Complementary Metal Oxide Semiconductor)工艺提出一款超宽带低附加相移可变增益放大器.该设计采用可变增益放大器和开关衰减器的组合结构,其中可变增益放大器在宽带、高效率的反馈式放大器的基础上通过改变偏置实现增益控制,而开关衰减器的应用在拓宽增益控制范围的同时减小了偏置变化范围,从而减小了不同增益状态下的附加相移.提取版图寄生参数后的仿真结果表明:在1.6 V供电电压下,该可变增益放大器在3.5~11 GHz范围内增益平坦度小于±0.75 dB,增益控制范围为-22~10 dB,增益步进值为0.5 dB,噪声系数小于6.5dB,不同增益状态下的附加相移小于±5°,电路输出1 dB压缩点大于12 dBm,动态功耗小于155 mW.该可变增益放大器拓扑在满足项目需求的同时为减小可变增益放大器的附加相移提供了一种思路.  相似文献   

5.
设计了一种400~800 MHz带有源巴伦的低噪声放大器(balun-LNA).电路输入级采用共栅结构实现宽带匹配,输出端使用共源漏技术来实现巴伦功能,将单端输入信号转变为差分输出信号,利用参数优化设计来降低噪声性能.电路采用TSMC 0.18 μm RF CMOS工艺仿真,结果表明:在400~800 MHz工作频段内,balun-LNA的输入反射系数小于-12 dB,噪声系数为3.5~4.1 dB,电压增益为18.7~20.5 dB,在3.3V电压下功耗约为17.8 mW.  相似文献   

6.
提出了一种可用于0.1-1.2 GHz射频接收机前端的宽带巴伦低噪声放大器(Balun-LNA).采用噪声抵消技术,输入匹配网络的沟道热噪声和闪烁噪声在输出端被抵消,在宽带内可同时实现良好的输入匹配和低噪声性能.通过分别在输入匹配级内增加共源放大器,在噪声抵消级内增加共源共栅放大器实现单端转差分功能.电路采用电流复用技术降低系统功耗.设计基于TSMC 0.18 μm CMOS工艺,LNA的最大增益达到13.5dB,噪声系数为3.2-4.1 dB,输入回波损耗低于-15 dB.在700 MHz处输入1 dB压缩点为-8 dBm,在1.8 V供电电压下电路的直流功耗为24 mW,芯片面积为0.062 5 mm 2 .  相似文献   

7.
设计实现了一种增益连续型的dB线性中频可变增益放大器.该放大器由2级优化了线性度的可变增益单元级联而成,通过宽范围的指数增益产生电路的设计,实现放大器的增益与控制电压成dB线性;同时,还设计了1种连续时间型Gm-C反馈结构的消直流失调电路,可实时抑制放大器的输出直流失调电压.电路采用0.18μm CMOS工艺进行流片,测试结果表明,在3.3V电压下,连续增益动态范围为-10~46dB,-3dB带宽大于20 MHz,直流失调的抑制增益小于-5dB,核心电路面积仅为0.11mm2.  相似文献   

8.
介绍了一种基于IHP 0.13 μm SiGe BiCMOS工艺,具有高本振(Local Oscillator, LO)/射频(Radio Frequency, RF)及本振/中频(Intermediate Frequency, IF)端口隔离度的太赫兹基波上混频器.该混频器采用了吉尔伯特双平衡结构,本振信号通过共面波导(Coplanar Waveguide, CPW)传输来抑制其在传输过程中由于强寄生耦合效应造成的传输不对称性,削弱了由该不对称性造成的LO/RF端口隔离度恶化的特性.通过采用非对称性的开关互联结构降低本振信号在开关晶体管集电极端寄生耦合的不平衡性,提升本振信号在开关晶体管集电极端的对消效率,通过在版图中合理布局跨导级晶体管的位置来抑制本振信号在中频端口的泄露.后仿真结果表明:在2.2 V电源电压下,本振信号为230 GHz,中频信号为2 ~ 12 GHz,该上混频器工作在218 ~ 228 GHz时,LO/RF端口隔离度大于24 dB, LO/IF端口隔离度大于20 dB,转换增益为-4 ~ -3.5 dB.当中频信号为10 GHz时,输出1 dB压缩点为-14.8dBm.电路直流功耗为42.4 mW,芯片的核心面积为0.079 mm2.该上混频器可应用于采用高阶正交幅度调制(Quadrature Amplitude Modulation, QAM)方式的无线发射系统.  相似文献   

9.
采用130 nm CMOS工艺,设计一种工作频率在94 GHz的高频无源混频器.该混频器为单平衡式结构,主要采用具有良好高频特性的肖特基势垒二极管与互补型传导传输线(CCS-TL)来实现.电路主要分为三部分:环形波导耦合器(Rat-race coupler),反向并联二极管对,低通滤波器.输入本振信号频率94 GHz,射频信号频率94.1 GHz,输出中频信号频率100 MHz.在电路直流偏置电压为0.5 V,本振信号PLO=0 dBm时,混频器的变频损耗为17 dB,P_(LO)=10 dBm,变频损耗为14.6 dB.经测试LO端口与RF端口的回波损耗分别为-13.4 dB,-16.7 dB,LO与RF的隔离度为26.2 dB.  相似文献   

10.
本文设计了一款应用于超高频射频识别标签的分裂低噪声跨导放大器的电流模无源混频器.这款电流模无源混频器的功耗低至2.2mW,包含跨阻放大器.在利用50%占空比本振信号的电流模无源混频器中,分裂的低噪声跨导放大器能够解决I/Q 2路镜像信号相互串扰的问题.因此,本文设计的电流模无源混频器能够继续利用50%占空比的本振信号,而不需要利用额外的电路将本振信号的占空比从50%变成25%,这样能够节省大量的功耗和面积.无源混频器前的阻抗匹配网络具有额外的电压增益,额外的电压增益能够抑制后级电路的噪声贡献,这有助于进一步节省无源混频器的功耗.这款无源混频器在SMIC 130nm CMOS工艺下流片.测试结果表明,无源混频器的电压转换增益为32.1dB,噪声系数为7.7dB,带内输入3阶交调点为-9.1dBm,功耗为2.2mW.芯片面积为0.32mm2.  相似文献   

11.
为抑制干扰和提高电路的线性,采用0.13μm RF CMOS工艺设计了一款无需声表滤波器的射频前端电路系统.该设计采用一种新的带干扰消除环路可变增益低噪声跨导放大器、25%占空比本振信号的无源混频器和互阻放大器架构来实现抗干扰、低噪声、高线性的射频前端.流片和测试结果表明:该电路抑制带外强干扰达20 d B以上,在2.4 GHz可实现44.98 d B增益和2.03 d B噪声系数,同时获得-7 d Bm的输入三阶互调截点和+72 d Bm的输入二阶互调截点,实现了无需声表滤波器和抗干扰特性;整个射频前端供电电压为1.2 V,功耗为36 m A.  相似文献   

12.
针对高分辨率成像冰川厚度探测雷达设计了一款VHF波段宽带高功率线性放大器.以硅VDMOS器件作为功放管,采用推挽结构和传输线变压器阻抗变换网络相结合的方法,实现了50 MHz~200 MHz频带范围内80 W线性功率输出.该放大器由四级级联组成,每一级均采用ADS作负载牵引仿真确定最佳负载阻抗并用负反馈技术确保增益平坦.测试结果表明,1 dB压缩点输出功率为80 W,增益54 dB,附加效率40%,谐波小于-30 dBc.  相似文献   

13.
在传统共栅放大器结构基础上,基于0.18μm CMOS工艺,提出一种带多重反馈环路技术的0.8~5.2GHz宽带低噪声放大器(LNA).该电路采用的负反馈结构在改善噪声系数和输入阻抗匹配的同时并不需要消耗额外的功耗;采用的双重正反馈结构增加了输入级MOS管跨导设计的灵活性,并可通过输出负载阻抗反过来控制输入阻抗匹配,使得提出的LNA在宽频率范围内实现功率增益、输入阻抗与噪声系数的同时优化.后版图仿真结果显示,在0.8~5.2GHz频段内,该宽带LNA的功率增益范围为12.0~14.5dB,输入反射系数S_(11)为-8.0~-17.6dB,输出反射系数S_(22)为-10.0~-32.4dB,反向传输系数S12小于-45.6dB,噪声系数NF为3.7~4.1dB.在3GHz时的输入三阶交调点IIP3为-4.0dBm.芯片在1.5V电源电压下,消耗的功率仅为9.0mW,芯片总面积为0.7mm×0.8mm.  相似文献   

14.
镜像抑制混频器能有效地减少镜像干扰,抑制镜像频率,被广泛的应用在微波产品中。主要设计了S波段镜像抑制混频电路,首先阐述了平衡混频器、镜像抑制混频器的工作原理,然后利用ADS进行设计和仿真。该混频器的射频输入信号3 600 MHz,本振输入信号为3 800 MHz,中频输出信号为200 MHz。为了减少射频和本振信号的泄露,利用λ/4开路线对信号进行回收,既减小了变频损耗,也增大了端口隔离度。最终变频损耗小于4.2 d B,隔离度大于30 d B,镜像抑制度基本都大于20 d B,由仿真结果验证出该设计是可行的。  相似文献   

15.
S波段单片低噪声放大器   总被引:1,自引:0,他引:1  
S波段单片低噪声放大器采用了0.5 μm φ3英寸(76.2 mm)砷化镓赝配高电子迁移率晶体管工艺,由三级自偏电路构成,单电源( 5 V)供电.对3英寸圆片上的放大器芯片进行直流测试后,随机抽取一定数量的样品装架测量, 并对放大器进行了增益和相位的统计.统计表明:在S波段带宽300 MHz范围内,增益在24.5~26 dB范围内, 相位线性度小于1°,相位偏差±7°,噪声系数最大1.4 dB,输入输出驻波最大1.4,1 dB压缩输出功率大于10.5 dBm.另外,还对放大器进行了高温、低温环境试验和静电模拟和试验.  相似文献   

16.
为了实现5G通信系统中高数据传输速率的要求,满足宽带条件下接收信号幅度的大动态范围变化,基于Global Foundries 55 nm CMOS工艺提出一种宽带且增益大范围线性变化的可变增益放大器.在该可变增益放大器中,采用改进型Cherry-Hooper放大器结构使其动态范围和电路带宽有效扩展,并利用晶体管的可调谐特性,在不使用附加电路的前提下使增益变化具有良好线性,解决了CMOS电路中放大器增益与控制电压非线性变化的难题,同时添加低截止频率的高通滤波器,消除可变增益放大器的直流偏移,并降低其误码率.版图仿真结果表明,在-33.4~46.9 dB的超宽动态范围内实现增益线性变化,3-dB带宽对应的频率达到1.89 GHz(0.000 12~1.9 GHz),可变增益放大器芯片(核心区域,不含焊盘)面积仅为0.006mm~2.该可变增益放大器指标完全满足目前5G宽带通信系统的要求.  相似文献   

17.
介绍了一种应用于宽带系统中的可重构模拟基带电路.该电路采用全CMOS工艺,由低通滤波器和可变增益放大器2个模块构成.低通滤波器可通过模拟控制电压调谐转折频率,调谐范围130~430 MHz,不仅兼容了WiMedia与中国标准,而且适用于更高频率的模拟基带信号处理;跨导放大器采用适用于低电压和高频率的Nauta结构,讨论了该跨导结构的共模稳定电路的设计参数对滤波器频率准确性的影响.整个模拟基带链路可以通过数字控制调节增益,其可变增益范围0~44 dB,增益步长1 dB,适用于不同的传输距离.为了避免高链路增益情况下失调的影响,加入了直流失调校正电路,并讨论了直流失调校正电路对主电路增益准确性的影响以及优化设计.设计采用0.18μm CMOS工艺,1.8 V电源电压.在实现可重构功能的同时,仍然拥有零增益时12.5 dBm的IIP3,在同领域处于领先水平.  相似文献   

18.
针对互补金属氧化物半导体工艺在高频时性能差的缺点,基于砷化镓赝配高电子迁移率晶体管器件,设计了一种用于无线通信系统的宽带低噪声放大器,宽带低噪声放大器的设计采用负反馈来获得平坦的增益和较低的输入输出反射系数。电路版图设计好后利用Advanced Design System 2005进行仿真。仿真结果表明,该放大器在0.3~2.2 GHz频带内,增益高于12 dB,且变化小于3 dB;噪声系数在1.04~1.43 dB之间,输入输出反射系数均小于-10 dB,群延时特性在整个频带内接近线性,且在整个频带内无条件稳定,所设计的宽带低噪声放大器能够很好地满足实际需要。  相似文献   

19.
超高频RFID读卡器接收前端低噪声放大器设计   总被引:2,自引:0,他引:2  
基于0.5 μm CMOS工艺设计了一种应用于超高频段射频识别系统读卡器接收前端的低噪声放大器.该电路采用带有源极退化的单端共源共栅结构,借助Cadence仿真环境完成了电路的仿真分析.仿真结果表明,在中心工作频率922.5 MHz上,电路具有良好的性能,各指标分别为:噪声系数(NF)0.828 4 dB,输出增益(S21)23.37 dB,输入反射系数(S11)-36.65 dB.输出反射系数(S22)-58.03 dB,反相隔离(S12)-44.79 dB,三阶交调点(IIP3)-13.157 2 dBm.  相似文献   

20.
在传统共栅放大器结构基础上,基于0.18 μm CMOS工艺,提出一种带多重反馈环路技术的0.8~5.2 GHz宽带低噪声放大器(LNA). 该电路采用的负反馈结构在改善噪声系数和输入阻抗匹配的同时并不需要消耗额外的功耗;采用的双重正反馈结构增加了输入级MOS管跨导设计的灵活性,并可通过输出负载阻抗反过来控制输入阻抗匹配,使得提出的LNA在宽频率范围内实现功率增益、输入阻抗与噪声系数的同时优化. 后版图仿真结果显示,在0.8~5.2 GHz频段内,该宽带LNA的功率增益范围为12.0~14.5 dB,输入反射系数S11为-8.0~-17.6 dB,输出反射系数S22为-10.0~-32.4 dB,反向传输系数S12小于-45.6 dB,噪声系数NF为3.7~4.1 dB. 在3 GHz时的输入三阶交调点IIP3为-4.0 dBm. 芯片在1.5 V电源电压下,消耗的功率仅为9.0 mW,芯片总面积为0.7 mm×0.8 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号