首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
关于Baer根     
环M叫做一个Baer根环,如果M的任意非零同态象恒含有非零的幂零理想.环Ω的一个理想A叫做一个Baer理想,如果环A是Baer根环.任何环Ω的所有Baer理想之并集仍为Ω的Baer理想,叫做Ω的Baer根(参看谢邦傑1955,§1).定理1.不含单位元素之环恒可扩张为含有单位元素之环使其Baer根不变.证明.设Ω是一个不含单位元素的环,若将Ω扩张为Ω_0那样的环(参看谢  相似文献   

2.
近似零化根     
§1.近似零化理想与根之定义设Ω为任意环,A为Ω的两边理想,Ω中所有使xA=0(或Ax=0)的元素x的集合A_L(或A_R),显然是Ω的一个两边理想.称为a在Ω中的左(或右)零化子.而Ω中所有使xA=Ax=0的元素x所组成的Ω的两边理想A_t,即称之为A在Ω中的两边零化子.  相似文献   

3.
近似诣零理想与根   总被引:2,自引:0,他引:2  
在一般珠之构造理论中,关于Kthe(1930)所定义之根是否在一般环中存在的问题至今尚未解次.其主要困难在于不易证明两个诣零左(或右)理想(即仅含幂零元素之理想)之和仍为诣零左(或右)理想.有凿于此,我们才考虑用近似诣零理想之概念(参看§1)去代替诣零理想之概念.这样便能在一般环中定义出根来.当一环之根为{0}时,则该环叫做半单纯环;当一环之根为该环本身时,则该环叫做根环.环{0}则既为半单纯环又为根环.  相似文献   

4.
设A是任意一个环,M是A的指零两边理想(即仅含冪零元素之两边理想),如果剩除环A/M不含有異于0的冪零理想,则说M是A的一个Baer根理想.环A的所有的Baer根理想的交集L(A)仍为环A的一个Baer根理想,R.Baer(1943)把L(A)叫做环A的下根(参看Baer 1943,§1),现在我们简称L(A)为环A的Baer根,并且当A=L(A)时,称A为Baer根环.设B是环A的一个理想(左、右或两边),如果把B看作一个环,而环B为Baer根环时,则说B是A的一个Baer理想.在第一节里,我俩专就Baer根环舆Baer理想来讨论,得到一些关于Baer根环舆Baer理想的此较基本的性质.首先用超窮归纳法证明了:Baer根环的同態像舆子环仍为Baer根环,以及任何环的Baer根恒为Baer根环,这是最基本的  相似文献   

5.
设Ω为任意一个环.Ω的一个理想(左、右或两边)A叫做是一个指数有界的诣零理想,如果有正整数n存在,使A中每个元秦x均适合x~n=0.当A是一个指数有界的诣零理想时,则把A中元素的冪零指数的最大数叫做A的上指数.环Ω的一个理想A叫做是一个局部有界理想,如果A含有Ω的一个異於0而指数有界的詣零理想。在第一节中,我们首先证明了:上指数为n(n>1)的诣零理想恆含有上指数为2或3的诣零理想;上指数为3者恒含有上指数为2者;上指数为2的理想则必为若于个(有限或无限个)冪零理想的併集(即定理1-3).其次我们举出一个例子说明理想之指数有界性只是幂零性之必要条件而非充分条件,即使上指数为2亦  相似文献   

6.
本文讨论环Ω的极大左零化子。对于半质环的极大左零化子,我们证明了它包含左与右奇理想。 对于极大左零化子两边理想A,我们证明了有含A的最小质理想 对于具有极大左零化子的元素α或适合左零化子极大条件环的非幂零元素中具极大左零化子的元素x,我们证明了它们在Ω生成的右理想αΩ_1或xΩ~1作为环,其幂零元素的全体恰构成其Baer根。  相似文献   

7.
本文讨论了具有一个极大左零化子理想M的Baer-半单纯环Ω的结构。主要结果是: 定理1 M包含Ω的一切诣零单边理想。 定理2 若Ω是近似诣零环且具有一个极大左零化子理想,则必含有非零幂零理想。 附带证明了近似诣零根是传袭根。  相似文献   

8.
<正> 设Ω是任一环,S是Ω的一个非空子集,则Ω中所有这样的元素a: as=0,对S中所有s,的集L,叫做S在Ω中的左零化子。易证,L是Ω的一个左理想。类似地可定义非空子集S在Ω中的右零化子R。如果我们对S附加条件时,譬如设S是Ω的左理想,那末这时说S在Ω中的左零化子L,不仅是Ω的左理想,而是Ω的两边理想了。同样对Ω的右零化子R来说,也有此结果。 如果环Ω中的左零化子满足降(升)链条件时,那末Ω的任意子环S中的左零化子也满  相似文献   

9.
给出了EP 内射环的几种等价刻画,证明了半素右EP 内射环的每一个极大右(左)零化子是由一个幂等元生成的极大右(左)理想.  相似文献   

10.
本文证明了下述结果: 1.设A为环Ω的一个非诣零左理想。若Ω的含于A的主左理想几乎满足降链条件,则A有非零幂等元。 2.环Ω的诣零左理想L是幂零的充分必要条件是Ω的含于L的左理想几乎满足升链条件;环Ω的诣零单边理想均为幂零的充分必要条件是Ω的诣零左理想几乎满足升链条件。 3.设A为环Ω的一个含于其反单纯根的理想。则A是幂零的充分必要条件是Ω的含于A的理想几乎满足降链条件。 4.左理想几乎满足降链条件的环为指数有界的π-正则环。 5.在理想几乎满足降(或升)链条件的环上,每个超幂零根性S与满足S′≥S的最小特殊根性S′重合。  相似文献   

11.
称每元生成的子半群皆左(右、双侧)理想的半群为子左(右、双)理半群,统称子理半群。本文证明,子左(右)理半群恰为右(左)零半群的推广,即为其极大幂零子半群的右(左)零带联,并给出了它们可能有的详细结构。  相似文献   

12.
谢邦杰证明了环R的上指数有限的诣零右理想必含R的上指数为2的诣零右理想;R的上指数为2的诣零右理想是R的幂零右理想的并集。Herstein证明了满足(xy—yx)~n=0的环的全部幂零元集为环的一个理想(参见文献[3])。本文给出以上两个结果和某些根的存在与结构定理的新证明。此外,本文给出一个环性质是一个根性的充分必要条件和R_n是半单纯环的一个充分条件。  相似文献   

13.
本证明了如果R是半素环,d是R的一个非零导子,使得1°,αd(α)-d(α)α=0,对任意α∈R;2°,R中不包含d(R)的素理想之交是(0),则R是交换环。  相似文献   

14.
本文证明了如下结果:(1)右强FC环为左FGF环;左FP—内射的左FGF环为右强FC环;(2)左FGF环为半单环或lD(R)=∞;(3)若单右R—模的内射闭包为f—投射模,则f.g.右R—模为无挠模;(4)左R—模M为f—投射模的充要条件是对任意f.g.左R—模P,自然映射:P~*(?) M→hom_R(P,M)为满同态。  相似文献   

15.
本文利用诣零半边理想的升链条件,证明了: 假定环Ω具有诣零左理想的升链条件,那末环Ω的任意诣零半边理想K一定是幂零的。本文的结果是有名的Levitzki定理的推广。  相似文献   

16.
研究了small-内射模和small-内射环的性质,证明了若R是约化的左small-内射环,记S=eRe,e~2=e∈R,则S是约化的左JP-内射环.用单奇异左(右)R-模的small-内射性刻画了半本原环,证明了R是半本原环当且仅当任意单奇异左(右)R-模是small-内射的.得到了在R是半局部环的条件下,以下叙述等价:(1)R是半单环;(2)R是正则环;(3)任意单奇异左(右)R-模是small-内射的;(4)R是半本原环.通过对环的极大左(右)零化子的研究,分别得出了若0≠a∈R,l(a)是R的极大左零化子,则l(a)=l(a~2);若0≠a∈R,r(a)是极大右零化子,则对任意0≠at∈R,有l(a)=l(at),并证得了若R是左small-内射环,且对0≠a∈J,l(a)(r(a))是R的极大左(右)零化子,则a是非零幂零元.  相似文献   

17.
Levitzki根存在定理即:任何环S的所有半幂零理想之并集N是S的半幂零两边理想,且剩余环=S/N不含非零的半幂零理想.此定理可简证之如下:首先我们知道若T是由有限个元素a_1,a_3,…,a_r所生成的环,则T的有限次方T~n亦是由有限个元素b_(i_1),…,i_k=a_(i_1)…a_i(n≤k<2n)所生成的环.由此即不难证明.引理.设  相似文献   

18.
G-morphic环的一些结果   总被引:11,自引:8,他引:3  
我们给出了G-morphic环的定义,证明了如下主要结果:对R中的任意幂等元e,如果R是左G-morphic环,则eRe也是左G-morphic环;每一个幺π-正则环是左(右)G-morphic环;每一个左G-morphic环是右GP-内射环.  相似文献   

19.
研究环的Ore扩张的幂零p.p.性,幂零Baer性和弱Mc Coy性,主要证明了:设R是一个拟IFP和(α,δ)-condition环,则有(1)如果R是幂零p.p.-环,则R[x;α,δ]是幂零p.p.-环;(2)如果R是幂零Baer环,则R[x;α,δ]是幂零Baer环;(3)R[x;α,δ]是右弱M c Coy环。  相似文献   

20.
结合环 R 称为右(左)Artin 环,若 R 对右(左)理想满足极小条件.本文的目的是讨论幂零的 Artin 环的结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号