首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 814 毫秒
1.
以南京市秦淮东河的膨胀土为研究对象,采用工业废料粉煤灰作为改良剂,通过自由膨胀率试验、界限含水率试验、干湿循环试验、快剪试验以及渗透试验来研究粉煤灰改量膨胀土不良工程特性的试验效果.试验结果表明,粉煤灰改良膨胀土降低了胀缩性,自由膨胀率随粉煤灰掺量的增加而减小;改良土较素土液限降低,塑限升高,塑性指数呈减小趋势;掺入粉煤灰可以提高膨胀土抗剪强度,而且黏聚力和摩擦角均随粉煤灰掺量的增加而增大;粉煤灰的掺入提高了膨胀土水稳性,能够抑制膨胀土干湿循环过程中的裂隙发展和强度衰减,并改善了膨胀土的低渗透性.  相似文献   

2.
通过在弱膨胀土中掺加粉砂土掺量分别为0%、10%、20%、30%、40%、50%的室内实验,对改良土的物理特性、力学特性、膨胀特性等变化规律展开研究,验证粉砂土对膨胀土改良作用,并提出达到合理改良效果的粉砂土掺量.实验结果表明:随着粉砂土掺量的增加,改良土自由膨胀率、塑限指数、塑限、液限逐渐降低,土中黏粒含量减少,降低了土的亲水特性;改良土的最大干密度相比于膨胀土明显升高,最佳含水率逐渐降低,减小了膨胀土中弱结合水水膜的厚度,其膨胀特性得到明显抑制;改良土的压缩模量逐渐增大,改良土的黏聚力减小,内摩擦角逐渐增大,无侧限抗压强度在粉砂土30%掺量前增大,无荷载膨胀率、有荷载膨胀率、膨胀力降低.根据实验结果的比较,建议合理的粉砂土掺量为30%.  相似文献   

3.
以膨胀土的塑性指数、自由膨胀率、标准吸湿含水率为研究对象,探讨工程实践中利用煤渣作为膨胀土改良材料的可行性。对膨胀土掺加不同比例的煤渣展开膨胀特性指标的室内试验,分析了塑性指数、自由膨胀率、标准吸湿含水率这3个判定指标的变化规律。试验结果表明:煤渣可用于膨胀土的改良,随着煤渣掺量的增加,塑性指数与煤渣掺量呈一元三次函数关系变化,自由膨胀率与煤渣掺量呈一元二次函数关系变化,标准吸湿含水率与煤渣掺量呈一元二次函数关系变化。煤渣掺量为15%~20%时,所取样本膨胀土改良后为非膨胀土,且继续增加煤渣掺量,可进一步改良膨胀土,但效果不明显,所以煤渣改良膨胀土的最佳掺量可确定为15%~20%。养护条件下,可较大幅度减少煤渣用量。  相似文献   

4.
针对安徽张庄矿尾矿坝填料膨胀土进行含水率、自由膨胀率δe f、膨胀力Pe和50 kPa压力下的有荷膨胀率δeP50试验,确定膨胀土的膨胀潜势及分布范围,采用掺石灰的方法对土体进行改良并进行击实试验,根据最大干密度和压实度96%制样,研究不同石灰掺量改良土自由膨胀率随养护时间的关系,进行干湿循环试验研究改良土的胀缩变形规律、渗透特性及抗剪强度特性.试验研究结果表明:随着石灰掺量的增加,膨胀土击实后最优含水率逐渐升高、最大干密度逐渐减小;改良土自由膨胀率随着养护时间的增加逐渐减小并于30 d之后趋于稳定;经历6次干湿循环后试样的胀缩变形存在着不可逆性,但掺灰量大于2%的改良土绝对膨胀率小于4%,试样表面无明显裂隙,抗剪强度提高明显,可认为试样膨胀性得到了良好的控制;对于相同石灰掺量的改良土,二次掺灰的改良效果要优于一次掺灰.  相似文献   

5.
探讨了利用风化砂作为改良材料抑制膨胀土吸水膨胀特性的可行性与改良效果,试验研究了风化砂掺量对改良膨胀土各项膨胀指标的影响,深入分析了在膨胀土中掺入不同比例的风化砂,改变混合料的初始含水率对有荷膨胀率的影响规律.研究表明 掺风化砂可以有效抑制膨胀土的吸水膨胀,增加风化砂的掺量,膨胀性指标参数会出现较为明显的降低;在同一初始含水率状态下,风化砂的掺入比例从0增加到10%,有荷膨胀率下降的幅度最大.改良膨胀土的有荷膨胀率随着初始含水率的增加呈指数函数下降,当初始含水率小于最佳含水率时,有荷膨胀率随着初始含水率的增加,出现比较明显的降低;当初始含水率大于最佳含水率时,如果继续增大初始含水率,有荷膨胀率的降低则表现不明显.当初始含水率相同时,在较大的上覆荷载作用下,掺风化砂对有荷膨胀的抑制效果较好.  相似文献   

6.
以合肥某公路工程膨胀土为原材料,在保持含水率和干密度不变的情况下,将磷尾矿按不同质量比掺入膨胀土中,对改良后土体进行无荷膨胀率、无侧限抗压强度及三轴压缩试验。试验结果表明,随着磷尾矿掺量的增加,改良土的膨胀率逐渐降低,磷尾矿可有效减小膨胀土的膨胀性;主应力差峰值随着磷尾矿掺量的增加,呈现先增大后减小的趋势,在掺量为6%时,抗剪强度达到最大;黏聚力随着磷尾矿掺量的增加而减小,内摩擦角先增大后减小。  相似文献   

7.
回填土导热性能是直埋电缆载流量的重要影响因素之一。为探究各因素对改良红黏土导热性能的影响规律,制备不同掺砂率、干密度、含水率的试样,在恒温密闭的条件下,采用瞬态热线法测试试样导热系数,分析掺砂率、干密度、含水率对改良土导热系数影响规律。研究结果表明:铜尾矿砂对红黏土导热系数具有较好的改良作用,改良土的导热系数随着掺砂率、含水率均呈现线性增长。改良土导热系数随着干密度的增大,其增长趋势具有阶段性,当改良土的干密度大于1.65 g˙cm-3,导热系数的增长速率明显减小。铜尾矿砂对改良土导热系数的影响在于其中大量石英改善了固体骨架之间的传热效率。含水率和干密度对改良土导热系数的影响,主要在于其使改良土的三相传热方式发生了改变。基于测试结果,构建预测改良土导热的新模型,其能够较好预测改良土导热系数。  相似文献   

8.
膨胀土改良技术及机理研究是国内外学者所关注的焦点之一。文章利用电石灰对膨胀土进行改良,并对其改良效果及机理进行初步研究。结果表明,电石灰能有效改善土体的胀缩特性,自由膨胀率、膨胀力及膨胀量指标均显著下降;此外,随着电石灰掺量及养护龄期的增加,改良土体的强度提高,且胀缩特性得到抑制。  相似文献   

9.
回填材料的导热系数是影响地源热泵系统性能的关键参数。在土壤中掺入石英砂、石墨、铁尾矿砂等导热性能较好的物质可以有效的提高回填材料的导热性能。选用铁尾矿砂与钠基膨润土组成混合材料,制备不同掺砂率、不同干密度以及不同含水率的试样。使用TC3000E瞬态热线法导热系数仪测定试样导热系数,分析其与掺砂率、干密度、含水率、饱和度等参数的关系,并探讨铁尾矿砂-膨润土混合材料导热系数预测模型。研究表明,混合材料的导热系数随掺砂率、干密度和含水率增大而增大。不同孔隙率下,导热系数与饱和度存在线性关系,并且孔隙率与各组拟合方程的斜率呈线性关系。基于Maxwell方程对悬浮物体积分数进行修正,构建铁尾矿砂-膨润土导热系数预测模型,能够较好的预测混合材料的导热系数。  相似文献   

10.
土的粒径对土的压实性、强度以及胀缩特性有一定的影响。为研究不同粒径的风化砂对膨胀土特性的影响及其影响规律,本文结合宜昌市风化砂改良膨胀土特性试验研究,对粒径(d)为0.5mm、0.5mm≤d1mm及1mm≤d2mm的风化砂改良膨胀土进行了无荷膨胀率、收缩、直剪和击实试验,得到不同粒径、不同掺砂比例改良膨胀土的击实、强度和胀缩指标。试验结果表明,掺入风化砂能够有效抑制膨胀土的胀缩特性,改善压实特性,提高膨胀土的强度;掺砂之后,膨胀土的最佳含水率、无荷膨胀率、线缩率、体缩率及收缩系数均降低,最大干密度、内摩擦角、缩限均增大。同一掺砂比例下,随着粒径的增大,膨胀土的无荷膨胀率、线缩率和体缩率均减小;内摩擦角、黏聚力、最大干密度及缩限均增大。同一粒径下,随着掺砂比例的增大,膨胀土的最佳含水率、无荷膨胀率、线缩率和体缩率均降低;缩限和内摩擦角均增大;黏聚力随着掺砂比例的增大先增大后减小。当粒径为1mm≤d2mm和0.5mm≤d1mm时,掺砂20%时黏聚力达到最大值;当粒径为0.5mm时,掺砂10%时黏聚力达到最大值。最大干密度的变化趋势随着风化砂粒径的改变而改变,当粒径为1mm≤d2mm时,最大干密度随着掺砂比例的增加而增大;当粒径为0.5mm≤d1mm时,最大干密度随着掺砂比例的增大先增大后逐渐减小,掺砂30%时,最大干密度达到最大值;当粒径为0.5mm时,最大干密度随着掺砂比例的增大先增大后减小,掺砂20%时,最大干密度达到最大值。  相似文献   

11.
为提高资源的循环利用,减少农业废弃物对环境的潜在影响,利用秸秆灰渣作为添加剂改良膨胀土,通过室内试验研究改良后膨胀土的基本工程性质指标、三维自由体变化特征和膨胀压力特征。秸秆灰渣以(干质量之比)0%,10%,15%,20%的比例与膨胀土混合后进行击实试验,在最大干密度及最佳含水率条件下进行三维自由体膨胀试验、三维自由体收缩试验和膨胀力试验。试验结果表明膨胀土的体应变、塑性指标和膨胀压力随着秸秆灰渣含量的增加而逐渐降低,最佳含量(17%)时体膨胀应变降低了61.2%,体收缩应变降低了61.77%,膨胀压力降低了85.37%。  相似文献   

12.
通过室内试验,探讨利用碱激发秸秆灰渣改良膨胀土的可行性及改良效果。试验研究了秸秆灰渣、碱激发秸秆灰渣改良膨胀土的基本工程性质指标、击实特性、胀缩特性及无侧限抗压强度的影响特征。试验研究结果表明,随着秸秆灰渣的增加或者碱溶液浓度的增加,膨胀土的塑性指数、自由膨胀率、膨胀量与膨胀力逐渐减小,这说明掺秸秆灰渣可有效降低膨胀土的胀缩性。击实样经养护后的膨胀试验结果表明,随着养护龄期的增加,膨胀土的膨胀力明显减小。无侧限抗压强度试验结果表明:没有经过养护的土样,碱激发秸秆灰渣对无侧限抗压强度的影响不够明显;经过7 d养护后,随着掺秸秆灰渣的增加,土样的无侧限抗压强度具有一定程度的提高,并且无侧限抗压强度存在一个峰值点。  相似文献   

13.
采用宜昌市广泛分布的风化砂对某一级公路改建项目的膨胀土进行改良。通过改良土室内胀缩性分析,表明采用风化砂改良膨胀土能显著抑制其胀缩特性; 通过室内CBR(加州承载比)试验,得出了掺入风化砂能显著提高原状膨胀土的CBR值,使之达到公路路用标准。探讨了不同的初始干密度、不同掺砂比例对膨胀土CBR值的影响。结果表明:初始干密度和掺砂比例对CBR值有很大的影响,在初始干密度一定时,CBR值随着掺砂比例的增加总体上有所增大; 在掺砂比例一定时,CBR值随着初始干密度的增加而增大。在相同掺砂比例下,CBR值与初始干密度呈幂函数关系。在相同干密度时,当CBR值与掺砂比例在初始干密度较小时,呈线性相关关系; 当初始干密度较大时,呈指数函数关系。  相似文献   

14.
In this paper, through the indoor free load swelling rate test, expansive soil in a section of a first- class highway reconstruction project in Yichang City was studied. It emphatically analyzed the interrelations among free load swelling rate, non-load time, the proportion of mixed sand and initial dry density. Experimen- tal studies have shown that: Free load swelling deformation is mainly divided into three stages of rapid expan- sion, slow expansion and final stability; when the initial dry density is constant, free load swelling rate of the weathered sand modified soil will reduce rapidly before they slow down with the increase of sand proportion, and weathered sand modified soil free load swelling rate is not sensitive to the large amount of sand mixed; in the same mixed sand ratio, weathered sand modified soil free load swelling rate increases rapidly with the in- crease of initial dry density, there is a good linear correlation between them. To take appropriate control of the initial dry density during the expansive soil subgrade construction helps to reduce its swelling deformation and ensures the stability of the embankment.  相似文献   

15.
干湿循环作用下石灰处治土强度特性试验研究   总被引:3,自引:0,他引:3  
以广西膨胀土为研究对象,通过一系列室内试验获得了石灰处治膨胀土的胀缩性指标(最大干密度、最优含水量、自由膨胀率和黏粒含量)随掺灰比和龄期的变化规律.针对石灰处治膨胀土在特定恒温恒湿条件下进行了标准吸湿含水率试验,以探讨标准吸湿含水率检验膨胀土处治效果的适用性.考虑干湿循环效应及反复交通荷载的共同作用,分别开展了不同干湿循环次数后的处治土静、动三轴试验,研究了处治膨胀土静、动力学强度指标随干湿循环次数的变化规律,并对处治膨胀土在干湿循环作用下的破坏特征进行了分析.  相似文献   

16.
本文以宁淮高速公路淮安段膨胀土填料为研究对象,通过室内试验研究石灰改良膨胀土作为路基填料的膨胀性和力学性质。在天然膨胀土2%石灰砂化的基础上,制备不同初始含水率与压实度的石灰改良土,进行不同养护龄期的有荷膨胀率和强度特性试验。试验结果表明:石灰改良土线膨胀率和膨胀力均有大幅度的降低,且随含水率和养护龄期保持减小趋势、随压实度保持增大趋势;石灰改良土无侧限抗压强度、黏聚力、内摩擦角均有一定程度的提高。因此,石灰改良膨胀土作为路基填料的施工工艺在工程中是可行的,为膨胀土改良方案选择以及膨胀土地区公路路基设计和现场施工提供科学依据和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号