首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 17 毫秒
1.
以南京市秦淮东河的膨胀土为研究对象,采用工业废料粉煤灰作为改良剂,通过自由膨胀率试验、界限含水率试验、干湿循环试验、快剪试验以及渗透试验来研究粉煤灰改量膨胀土不良工程特性的试验效果.试验结果表明,粉煤灰改良膨胀土降低了胀缩性,自由膨胀率随粉煤灰掺量的增加而减小;改良土较素土液限降低,塑限升高,塑性指数呈减小趋势;掺入粉煤灰可以提高膨胀土抗剪强度,而且黏聚力和摩擦角均随粉煤灰掺量的增加而增大;粉煤灰的掺入提高了膨胀土水稳性,能够抑制膨胀土干湿循环过程中的裂隙发展和强度衰减,并改善了膨胀土的低渗透性.  相似文献   

2.
工业废料改良膨胀土基本物理性质试验研究   总被引:1,自引:1,他引:0  
研究利用工业废料铁尾矿砂和电石渣作为添加剂改良膨胀土的可行性与改良效果。通过室内试验,对铁尾矿砂改良土及铁尾矿砂-电石渣复合改良土的基本物理性质指标进行了研究。试验研究结果表明,单掺铁尾矿砂改良膨胀土,随着掺砂率的增加,改良土的自由膨胀率显著降低,界限含水率和塑性指数均降低。同时掺入铁尾矿砂和电石渣复合改良膨胀土的改良效果要优于单掺铁尾矿砂的改良效果。当铁尾矿砂掺量一定时,随着掺渣率的增加,改良土的自由膨胀率基本上是呈线性递减;改良土的液限降低,塑限先增大后减小,在掺渣率为10%时达到最大,从而改良土的塑性指数先减小后增大;在掺渣率为10%时达到最小。当两种材料掺量一定时,随着养护龄期的增大改良效果更为显著。当掺渣率一定时,随着铁尾矿砂掺量的增加,改良土的自由膨胀率、界限含水率和塑性指数仍均是降低的,与之前单掺铁尾矿砂改良膨胀土得出的结果相一致。说明掺铁尾矿砂和电石渣均对膨胀土的物理性质有显著影响,因此为膨胀土改良提供了一种新方法。  相似文献   

3.
以合肥某公路工程膨胀土为原材料,在保持含水率和干密度不变的情况下,将磷尾矿按不同质量比掺入膨胀土中,对改良后土体进行无荷膨胀率、无侧限抗压强度及三轴压缩试验。试验结果表明,随着磷尾矿掺量的增加,改良土的膨胀率逐渐降低,磷尾矿可有效减小膨胀土的膨胀性;主应力差峰值随着磷尾矿掺量的增加,呈现先增大后减小的趋势,在掺量为6%时,抗剪强度达到最大;黏聚力随着磷尾矿掺量的增加而减小,内摩擦角先增大后减小。  相似文献   

4.
石灰、粉煤灰改良膨胀土性质机理   总被引:12,自引:2,他引:12  
在分析石灰、粉煤灰混合料改良膨胀土化学机理的基础上,通过膨胀土及其改良土的性质与强度特性试验,得到了石灰、粉煤灰混合料在改良膨胀土中的最佳添加量;发现改良膨胀土的液限、塑限比膨胀土的大,膨胀土的应力-应变曲线呈应变硬化型,改良膨胀土的呈软化型,改良膨胀土的粘聚力比膨胀土的大,而内摩擦角反而小;还发现膨胀土的自由膨胀率随石灰量的增加而减小,无侧限抗压强度随石灰量的增加而增大。  相似文献   

5.
针对安徽张庄矿尾矿坝填料膨胀土进行含水率、自由膨胀率δe f、膨胀力Pe和50 kPa压力下的有荷膨胀率δeP50试验,确定膨胀土的膨胀潜势及分布范围,采用掺石灰的方法对土体进行改良并进行击实试验,根据最大干密度和压实度96%制样,研究不同石灰掺量改良土自由膨胀率随养护时间的关系,进行干湿循环试验研究改良土的胀缩变形规律、渗透特性及抗剪强度特性.试验研究结果表明:随着石灰掺量的增加,膨胀土击实后最优含水率逐渐升高、最大干密度逐渐减小;改良土自由膨胀率随着养护时间的增加逐渐减小并于30 d之后趋于稳定;经历6次干湿循环后试样的胀缩变形存在着不可逆性,但掺灰量大于2%的改良土绝对膨胀率小于4%,试样表面无明显裂隙,抗剪强度提高明显,可认为试样膨胀性得到了良好的控制;对于相同石灰掺量的改良土,二次掺灰的改良效果要优于一次掺灰.  相似文献   

6.
土的粒径对土的压实性、强度以及胀缩特性有一定的影响。为研究不同粒径的风化砂对膨胀土特性的影响及其影响规律,本文结合宜昌市风化砂改良膨胀土特性试验研究,对粒径(d)为0.5mm、0.5mm≤d1mm及1mm≤d2mm的风化砂改良膨胀土进行了无荷膨胀率、收缩、直剪和击实试验,得到不同粒径、不同掺砂比例改良膨胀土的击实、强度和胀缩指标。试验结果表明,掺入风化砂能够有效抑制膨胀土的胀缩特性,改善压实特性,提高膨胀土的强度;掺砂之后,膨胀土的最佳含水率、无荷膨胀率、线缩率、体缩率及收缩系数均降低,最大干密度、内摩擦角、缩限均增大。同一掺砂比例下,随着粒径的增大,膨胀土的无荷膨胀率、线缩率和体缩率均减小;内摩擦角、黏聚力、最大干密度及缩限均增大。同一粒径下,随着掺砂比例的增大,膨胀土的最佳含水率、无荷膨胀率、线缩率和体缩率均降低;缩限和内摩擦角均增大;黏聚力随着掺砂比例的增大先增大后减小。当粒径为1mm≤d2mm和0.5mm≤d1mm时,掺砂20%时黏聚力达到最大值;当粒径为0.5mm时,掺砂10%时黏聚力达到最大值。最大干密度的变化趋势随着风化砂粒径的改变而改变,当粒径为1mm≤d2mm时,最大干密度随着掺砂比例的增加而增大;当粒径为0.5mm≤d1mm时,最大干密度随着掺砂比例的增大先增大后逐渐减小,掺砂30%时,最大干密度达到最大值;当粒径为0.5mm时,最大干密度随着掺砂比例的增大先增大后减小,掺砂20%时,最大干密度达到最大值。  相似文献   

7.
纤维增韧地质聚合物改良膨胀土力学特性试验   总被引:1,自引:0,他引:1  
针对膨胀土对工程建设的危害,提出一种纤维加筋和化学改良相结合的技术,开展无侧限抗压强度试验,探讨固化剂类型和掺量、碱激发剂的掺入、玄武岩纤维掺量以及养护龄期对改良膨胀土无侧限抗压强度的影响。研究结果表明:双掺矿渣微粉-粉煤灰(GGBS-FA)的改良效果优于单掺,GGBS-FA的最优掺量为20%,并且掺入碱激发剂Na_2SiO_3的改良效果较好,碱激发GGBS-FA改良土的强度比GGBS-FA改良土的提高了107%;随着纤维掺量的增加,改良土的强度呈现先增大后减小的趋势,GGBS-FA改良土的纤维最优掺筋率为0.6%;改良土的强度随着养护龄期的延长逐渐提高。龄期越长,改良土的脆性越大,韧性越差。  相似文献   

8.
本文以宁淮高速公路淮安段膨胀土填料为研究对象,通过室内试验研究石灰改良膨胀土作为路基填料的膨胀性和力学性质。在天然膨胀土2%石灰砂化的基础上,制备不同初始含水率与压实度的石灰改良土,进行不同养护龄期的有荷膨胀率和强度特性试验。试验结果表明:石灰改良土线膨胀率和膨胀力均有大幅度的降低,且随含水率和养护龄期保持减小趋势、随压实度保持增大趋势;石灰改良土无侧限抗压强度、黏聚力、内摩擦角均有一定程度的提高。因此,石灰改良膨胀土作为路基填料的施工工艺在工程中是可行的,为膨胀土改良方案选择以及膨胀土地区公路路基设计和现场施工提供科学依据和参考。  相似文献   

9.
在不同掺入量及不同上覆荷载作用下,对不同材料改良膨胀土的有荷膨胀率进行了试验研究.结果表明,石灰、水泥、粉煤灰、风化砂4种材料均能有效遏制膨胀土的有荷膨胀率,不同的上覆荷载和不同的掺入量对有荷膨胀率的影响较大.随着上覆荷载的增加,各改良膨胀土的有荷膨胀率逐渐减小,说明了增大上覆荷载能较好地抑制膨胀土的膨胀变形.随着各材料掺入量的增加,有荷膨胀率逐渐减小,但减小的幅度有所不同.通过分析试验数据可以看出,当改良材料掺入量最大时,在各级荷载作用下,风化砂改良膨胀土的有荷膨胀率减小量最大,其后依次是石灰、水泥、粉煤灰;当上覆荷载由0增大到75 kPa时,不同改良材料在不同掺入量下,有荷膨胀率减小量最大的是石灰,其次是水泥,再次是粉煤灰,最后是风化砂.  相似文献   

10.
在不同掺入量及不同上覆荷载作用下,对不同材料改良膨胀土的有荷膨胀率进行了试验研究.结果表明,石灰、水泥、粉煤灰、风化砂4种材料均能有效遏制膨胀土的有荷膨胀率,不同的上覆荷载和不同的掺入量对有荷膨胀率的影响较大.随着上覆荷载的增加,各改良膨胀土的有荷膨胀率逐渐减小,说明了增大上覆荷载能较好地抑制膨胀土的膨胀变形.随着各材料掺入量的增加,有荷膨胀率逐渐减小,但减小的幅度有所不同.通过分析试验数据可以看出,当改良材料掺入量最大时,在各级荷载作用下,风化砂改良膨胀土的有荷膨胀率减小量最大,其后依次是石灰、水泥、粉煤灰;当上覆荷载由0增大到75 kPa时,不同改良材料在不同掺入量下,有荷膨胀率减小量最大的是石灰,其次是水泥,再次是粉煤灰,最后是风化砂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号