首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   2篇
  综合类   2篇
  2019年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
为了准确快速检测人体跌倒状态,提出基于惯性测量单元(inertial measurement unit,IMU)测量和处理数据的极限学习机(extreme learning machine,ELM)快速分类判别方法。分析了人体运动行为特征,构建了腿部运动参数提取模型;通过IMU采集人体腿部运动特征数据,并进行姿态解算;采用ELM方法对人体运动特征的加速度、角速度和姿态进行分类,判断人体是否处于跌倒状态;根据机器学习评价指标对ELM参数进行优化,得到最佳参数。进行了人体运动状态测量实验,结果表明,ELM方法能够对IMU测量和处理数据进行准确快速地分类。当隐含层结点为1 000时,ELM检测方法跌倒检测的准确率为96. 45%,灵敏度为97. 32%,特异性为89. 32%。因此,采用ELM快速检测方法,可有效地对人体运动特征数据进行分类,实现对人体跌倒行为的准确检测。  相似文献
2.
针对多传感器融合姿态解算精度不高的问题,本文提出一种改进的卡尔曼滤波算法,即高阶线性互补滤波与扩展卡尔曼滤波(Extended Kalman Filter,EKF)相结合的融合算法。该数据的融合是基于加速度计、陀螺仪传感器频率特性和姿态角的微分方程建立的系统模型,将互补滤波的姿态角数据作为该系统模型的观测值,利用EKF算法对加速度计、陀螺仪、磁力计进行数据融合。高阶的互补滤波和EKF的融合算法能够有效的解决陀螺方向的估计偏差,为了证明该算法的可行性,用搭载IMU(InertialSmeasurementSunit)模块的四旋翼飞行器进行了动态和静态的实验,分析对比了最新导航算法、经典卡滤波算法和该融合算法滤波的效果。实验结果表明:本文提出的高阶无源线性互补滤波和EKF相结合的融合算法,无论在静态还是动态的实时性情况下,都能很明显的去除噪声和抑制姿态角的漂移,且提高了姿态角的精度。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号