首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   30篇
  国内免费   44篇
丛书文集   21篇
现状及发展   4篇
综合类   596篇
  2022年   5篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   10篇
  2016年   9篇
  2015年   15篇
  2014年   23篇
  2013年   11篇
  2012年   29篇
  2011年   27篇
  2010年   17篇
  2009年   22篇
  2008年   17篇
  2007年   41篇
  2006年   38篇
  2005年   33篇
  2004年   27篇
  2003年   40篇
  2002年   30篇
  2001年   23篇
  2000年   24篇
  1999年   23篇
  1998年   17篇
  1997年   18篇
  1996年   6篇
  1995年   13篇
  1994年   16篇
  1993年   11篇
  1992年   15篇
  1991年   11篇
  1990年   13篇
  1989年   3篇
  1988年   9篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
排序方式: 共有621条查询结果,搜索用时 46 毫秒
101.
首次研究了水产品蛋白酶解物对乳酸菌的增殖作用。选择草鱼皮为原料,通过蛋白酶Protease P“Amano”6对其进行酶解,其水解物可以作为培养嗜热链球菌增殖的氮源。同时以水解度和水解物对嗜热链球菌的增殖效果为评价指标,并利用正交实验对酶解工艺进行了优化。结果表明,蛋白酶Protease P“Amano”6对草鱼皮最佳的酶解条件为:加酶量3%、料水比1∶3(m/V)、酶解时间7 h、pH 8.0、反应温度45℃。  相似文献   
102.
以蛋白水解度和酶解液中海参肽相对分子质量的分布作为指标,考察不同蛋白酶的酶解效果,筛选水解海参内脏的最适合蛋白酶,并通过单因素实验和正交实验优化酶解工艺.实验结果表明:胰蛋白酶的水解效果最佳,可用于水解海参内脏制备海参肽;在底物质量分数为1.0%,加酶量为0.375 1 mkat·g-1,pH值为8.0,酶解温度为37 ℃,水解时间为5 h的最优酶解条件下,海参内脏的水解度可达到48.90%,酶解液中的多肽(2 000~5 000 u)质量分数为52.68%,寡肽(含氨基酸)(≤2 000 u)质量分数为47.25%.  相似文献   
103.
 采用自行设计的脉冲布水器,建造脉冲水解酸化-A/O(厌氧好氧工艺法)中试装置处理实际石化废水。水解酸化池和A/O的容积分别2.6 m3和3.9 m3;脉冲布水器的频次为10次/h;A/O池污泥龄25 d,污泥回流比100%,温度15~32℃。反应器稳定运行近7个月的结果表明:尽管进水化学需氧量(COD)和氨氮波动较大,但出水COD和氨氮的去除率保持稳定。在进水COD质量浓度为(458±107)mg·L-1,系统COD去除率为80%,其中脉冲水解酸化池(PHA)的COD去除率为29%。进水氨氮质量浓度为(35.9±11.3)mg·L-1,系统氨氮的去除率为86%。UV254和TN的平均去除率约为58%,TP去除率可达86%。PHA泥水混合良好,出水挥发性脂肪酸(VFA)浓度比进水提高近1倍,BOD5(5天生化需氧量)/COD值比进水提高35%,显示其良好的水解酸化效果,并可提高进水的可生化性。Ilumina Miseq测序结果表明:变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)是主要的优势菌群,所占的比例在50%以上。在属的水平上,Anaerolineaceae和Clostridiales在水解酸化池中丰度较高;A/O池中丰度较高的菌属为Flexibacter,Thiobacillu,Nitrosomonadaceae和Nitrospira。通过反应器各段不同微生物种群的共同作用,石化废水中复杂的有机污染物得以有效降解。结果表明,脉冲布水水解酸化-A/O工艺是一种很有前途的石化废水处理技术,并可应用于其他工业废水的处理。  相似文献   
104.
黄艳燕  王升  冯涛  唐智慧  莫君明 《广西科学》2020,27(2):175-181,194
运用响应面法优化大米蛋白酶法水解条件,提高大米蛋白水解度和提取率。本研究首先应用单因素实验法分析酶添加量、温度、pH值以及酶解时间对大米蛋白水解的影响;然后在单因素实验基础上,进一步采用Box-Behnken法进行实验设计,考察上述4个因素对大米蛋白水解度和蛋白质提取率的影响。研究结果表明最佳酶解条件为温度62℃,酶添加量2.5%,pH值8.2,酶解时间10.5h,此时大米蛋白的水解度可达到41.5%,蛋白质提取率可达93.1%。研究成果可为酶解制备可溶性大米蛋白肽的工业化应用提供参考。  相似文献   
105.
以尿素为沉淀剂, 采用均相沉淀法成功制备了层状Cu/Zn/Al 水滑石化合物. 将前驱体材料经焙烧、还原后得到Cu/ZnO/Al2O3 催化剂, 并将其用于CO2 加氢合成甲醇反应. 采用X 射线衍射(X-ray diffraction, XRD)、热重(thermogravimetric, TG)分析、扫描电镜(scanning electron microscope, SEM)、X射线荧光(X-ray fluorescence, XRF)分析、N2吸附、H2 程序升温还原(H2-temperature program reduction, H2-TPR)、氧化亚氮(N2O)反应吸附、CO2程序升温脱附(CO2 temperature program desorption, CO2-TPD)技术对所制备的样品进行表征. 结果表明, 相对于传统共沉淀法, 以尿素作为沉淀剂, 通过均相沉淀法所制备的前驱体的结晶度更高、催化剂比表面积更大、金属Cu 的分散度更好. 另外, 采用回流处理可以获得更好的效果. 活性评估结果表明, O2转化率随金属Cu 比表面积的增大而增加, 而甲醇选择性则与催化剂表面碱性位的分布有关. 因此, 采用尿素回流处理均相沉淀法制备的Cu/ZnO/Al2O3催化剂的甲醇收率最高.  相似文献   
106.
通过96 h无置换动态水解批式实验和不同缓冲液置换频率动态水解批式实验,研究破碎预处理、翻转、甲烷化出水和不同时间间隔置换操作对于城市生活垃圾可生物降解组分(OFMSW)厌氧消化水解过程的影响.结果表明:翻转可使OFMSW的动态水解效率最高达到42.7%(未破碎甲烷化出水缓冲液工况),而不翻转时仅有22.3%;与蒸馏水相比,未破碎预处理工况下,甲烷化出水可使OFMSW的水解效率提高40.6%;但破碎预处理之后,仅提高了3.6%,说明对OFMSW进行破碎预处理不会显著提高水解效率,反而增加了破碎能耗;缓冲液置换操作一定程度上解除了高浓度有机酸的产物抑制;不同置换频率工况相比,虽然每24 h和每48h置换的工况比每12 h置换的工况所得到的OFMSW减重率分别高出11.5%和40.7%,但能耗相应增加了100%和300%,因此,缓冲液置换频率以12h为最佳.  相似文献   
107.
本文研究了混凝,厌氧酸化,生物接触氧化一体化反应器处理造纸制浆含氯漂白废水,在水力停留时间为15h时,整个系数CODcr总去除率达88.1%,BOD5去除率达81%,AOX去除率达98.4%,毒性值去除了92%,絮凝单元去除的主要是大分子氯代有机物,厌氧单元通过还原脱氯及酸性水解,氯代有机物得到了基本的去除;好氧单元对COD有较高的去除率,红外光谱的分析结果表明:废水中既有木素又有纤维素和半纤维素,虽然漂白废水厌氧处理效果不如好氧处理,但厌氧,好氧联合处理可有效地提高其处理效果。  相似文献   
108.
柱状假丝酵母脂肪酶可以选择性催化S-萘普生甲酯、乙酯和乙氧基乙基酯发生水解,从而对化学合成的混旋萘普生进行拆分,制备具有高光学纯度的S-对映体。利用中等极性大孔吸附树脂HZ-806作为固定化载体,可在酶分子周围营造一个有利于反应的微环境,有效地提高酶的催化活力及解决酶的回收。在中等极性大孔吸附树脂固定化酶填充床反应器中,混旋乙氧基乙基萘普生酯可被连续水解拆分,当流量为72mL/h时,酯的水解率为17%,光学纯度为89.1%。  相似文献   
109.
以D-葡萄糖为原料制备一种碳基固体酸催化剂,采用X线衍射(XRD)、红外光谱(FT-IR)和酸密度测定等手段对催化剂进行表征,并以醋酸甲酯水解为探针反应,考察碳化和磺化温度对催化剂活性的影响。结果表明:碳基固体酸催化剂是由连接有磺酸基(—SO3H)的芳香碳片组成的无定形碳;当碳化温度为450℃、磺化温度为90℃时,制备的酸密度为1.4 mmol/g的催化剂具有较高的催化活性。与分子筛HZSM-5和强酸性阳离子交换树脂Amberlyst-15相比,碳基固体酸催化剂具有更高的转化频率。催化剂重复使用8次后,醋酸甲酯水解率稳定在10.5%左右,表明催化剂具有较好的稳定性。  相似文献   
110.
以2,5-二氟苯胺为原料,经重氮化反应生成2,5-二氟硼酸重氮盐,与三氯化磷反应后水解、中和得到新化合物2,5-二氟苯膦酸二钠盐,其结构经过1 H NMR,31P NMR,元素分析及单晶X-射线衍射确证.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号