首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用介孔碳作为载体,制备介孔碳担载Pt-WO3复合催化剂应用于质子交换膜燃料电池(PEMFC)电极.以苯为碳源,采用气相沉积法复制介孔SiO2 Al-SBA-15模板结构合成石墨化介孔碳Cg,采用浸渍法制备无定形介孔碳CMK-3.通过分步沉积,将Pt和WO3担载到介孔碳载体上,采用比表面分析(BET)、X线衍射(XRD)、透射电子显微镜(TEM)、循环伏安法以及单电池极化性能测试对介孔碳担载的复合催化剂进行表征.结果表明:介孔碳作为催化剂载体,其孔道结构有助于催化剂的均匀分散,从而提高催化剂的电催化剂活性.由于石墨化介孔碳的导电性能高于无定形介孔碳,因此Pt-WO3/Cg比Pt-WO3/CMK-3具有更好的电极催化活性.  相似文献   

2.
采用原位化学还原法制备碳纳米管载铂(Pt/CNTs)和碳粉载铂(Pt/C)催化剂,并对它们进行透射电镜分析和X射线衍射分析,同时制成膜电极,组成单电池,对质子交换膜燃料电池的性能进行测试.实验结果表明,所制备的两种催化剂中铂粒径均较小(4nm左右),而Pt/CNTs表现出的催化性能比Pt/C更优越.  相似文献   

3.
以二氧化硅微球作模板,葡萄糖为碳源,通过水热法成功合成粒径均一、尺寸较小的碳空心球(HCSs),并以此为载体合成碳空心球载铂铅纳米微粒复合催化剂(PtPb/HCSs),在1 mol.L-1CH3OH+0.5mol.L-1H2SO4混合溶液中考察了PtPb/HCSs催化剂对甲醇的电催化氧化性能。样品的成份、结构和形貌分别用SEM、TEM、XRD和EDS进行表征。循环伏安(CV)及计时电流法实验表明碳空心球载铂铅催化剂对于甲醇氧化具有良好的电催化活性及稳定性。PtPb/HCSs电极优异的催化性能归因于碳空心球的高比表面积以及Pb的协同作用,是一种优良的直接甲醇燃料电池(DMFC)阳极材料。  相似文献   

4.
为研究聚吡咯(PPy)–C复合担载Pt(Pt/PPy-C)质子交换膜燃料电池催化剂性能。采用循环伏安电化学法(CV)、单电池极化法、加速耐久性测试法、傅里叶变换红外光谱(FT-IR)、X线衍射仪(XRD)和扫描电子显微镜(SEM)表征催化剂的微观结构、导电性及电化学性能。结果表明:通过掺杂阴离子可显著改变PPy-C的电导率,亲核性较大的氟硼酸掺杂制备的PPy-C电导率(8.65 S/cm)明显高于草酸掺杂的PPy-C电导率(4.01 S/cm);以PPy-C为载体担载Pt催化剂的电化学活性面积高于Pt/C催化剂,可达57.8 m~2/g;Pt/PPy-C电化学活性表面积及电池性能的衰减率都低于传统Pt/C催化剂。  相似文献   

5.
采用Pt/C作为阴极催化剂,PtRu/C作为阳极催化剂,Nafion115和Nafion液涂覆膜作为质子交换膜,管状Ti丝(管)和平板式Ti网作为制备异型直接乙醇燃料电池的阴极和阳极的载体材料,制备管状阴极和平板阳极.观察了异型阴极和阳极的组织和结构,并通过单电池试验,研究了异型电极对直接乙醇燃料电池(DEFCs)性能的影响.结果表明,管状阴极涂覆的Nafion膜均匀一致,阳极催化剂与Ti网的结合能力较强,较高的O2流量有利于提高DEFCs单电池的性能,当膜载量达到25.0 mg/cm2以上时,会提高DEFCs单电池阻抗,当膜载量小于20.2 mg/cm2时,电池的使用寿命大大降低.  相似文献   

6.
以三聚氰胺甲醛树脂和硝酸钴为前驱体,在Ar保护下采用高温碳化方法制备用于直接甲醇燃料电池(DMFC)阴极的含氮碳载钴(Co-N-C)氧还原电催化剂.利用热重与红外光谱联用、X射线衍射分析、元素分析等方法表征了催化剂的制备过程和结构,采用旋转圆盘电极测试考察了不同碳化温度对Co-N-C电催化剂氧还原催化活性的影响及电催化剂的耐醇性能,并采用该催化剂为阴极催化剂进行DMFC单电池测试.结果表明:Co-N-C电催化剂具有较高的电催化活性和较好的耐醇性能;其氧还原起始电位在0.5V(vs.SCE)左右;700℃碳化温度下制备的Co-N-C电催化剂具有最高的氧还原催化活性.  相似文献   

7.
本文采用水热方法合成不同粒径和形貌的碳球,并将其作为载体,采用化学镀的方法制备PtRu/C催化剂;应用XRD、SEM和TEM对碳球及催化剂的结构和形貌进行表征。采用电化学方法测试不同形貌碳球的比表面积以及碳球担载催化剂的催化活性,结果表明,水热反应条件对碳球的粒径及形貌影响显著,三种碳球担载催化剂的活性按照以下顺序衰减:多孔的粒径约为100nm的碳球担载PtRu催化剂优于连体碳球优于直径约500nm的单分散碳球担载催化剂。TEM分析结果表明,在碳球表面化学镀的PtRu纳米颗粒均匀分散在碳载体表面,其平均粒径约为3nm。电化学测试表明粒径为100nm的多孔碳球的电化学比表面积较大,以这种碳球为载体的PtRu/C催化剂对甲醇氧化的催化性能较高。  相似文献   

8.
利用静电纺丝和化学镀技术相结合的方法,制备出镀金聚丙烯腈杂化纤维膜Au-PAN,然后以此为载体,再利用化学镀法在该膜的表面镀上一层铂纳米粒子,从而构建出催化电极Pt/Au-PAN.为了比较,在相同条件下将商用Pt/C滴涂到Au-PAN基底上构建催化电极Pt/C/Au-PAN.采用SEM、TEM和XRD对催化电极结构表征,并研究其催化氧化甲醇的性能.结果表明:用化学镀法制备的Pt/Au-PAN电极对甲醇的电化学氧化活性和稳定性都明显优于商用铂碳催化剂.  相似文献   

9.
以乙炔为碳源、铜粉为催化剂制备碳质纤维(CF),采用氧化剂(硝酸、硫酸或过氧化氢)对所制备的碳质纤维进行氧化处理,将氧化后的碳质纤维固载Pd制备Pd/CF催化剂,并考察其在溴苯和苯硼酸Suzuki反应中的催化性能.利用傅里叶变换红外光谱仪(FT-IR)、电感耦合等离子体发射光谱仪(ICP-OES)和场发射扫描电子显微镜...  相似文献   

10.
以掺杂石墨粉的中间相碳微球(MCMB/G)烧结管为阴极支撑体,采用浸涂工艺分别制备了扩散层和催化层,通过在其外表面包裹Nafion 117膜制得管状异型阴极并组装成异型直接乙醇燃料电池,采用水热乙二醇制备了适用于直接乙醇燃料电池的阳极电催化剂,并通过XRD,TEM和EDS等技术对其进行了表征.采用线性循环伏安曲线、交流阻抗等测试手段,对Pt-SnO2/C电催化剂异型直接乙醇燃料电池进行了性能测试,并考察了温度、氧气流量等对电池极化性能的影响.结果表明:异型电池阻抗大于传统的平板电池,但其活化后电池阻抗明显下降;较高的氧气流量和较高的工作温度有利于提高电池性能;60℃条件下,Pt-SnO2/C电催化剂异型直接乙醇燃料电池功率密度达到8.5 mW·cm-2.  相似文献   

11.
以树脂碳为载体,用化学吸附还原法、电镀还原法和离子溅射法制备了3种不同类型的铂碳复合电极,然后采用恒电位法测定了铂碳复合电极的阴极极化曲线,并以此为基础求出了这些铂碳复合电极的有关电化学参数.实验结果表明用不同方法制备的铂碳复合电极在相同测试条件下的交换电流密度、塔菲尔常数和传递系数等电化学性能参数有一定的差别.这些实验数据为评价不同工艺方法制备的离子交换膜燃料电池铂碳复合电极的电化学性能提供了重要的参考依据.  相似文献   

12.
采用乙二胺对氧化石墨烯(GO)进行功能化改性,利用傅里叶变换全反射红外光谱 (ATR FT-IR)、X射线光电子能谱 (XPS) 和透射电镜 (TEM)等测试手段对氧化石墨烯功能化前后的结构进行了定性和定量分析,结果表明功能化石墨烯(FG)中成功的引入了乙二胺。利用功能化石墨烯作为催化剂载体,制备了功能化石墨烯载铂催化剂(Pt/RFG),与商业碳载铂催化剂(Pt/C)进行对比,结果发现铂颗粒在RFG上具有良好的分散性,且平均粒径较小。将这两种催化剂样品分别与全氟磺酸树脂混合制成膜电极,应用于固体聚合物电解水制氢技术,测试其电解去离子水时的电流密度及产氢速率,其中含有Pt/RFG的膜电极电解效率较高,产氢速率可达到2.96 mL/(min·cm2)。  相似文献   

13.
利用简单的一步水热法制备多壁碳纳米管负载Ni_(0.85)Se纳米复合材料,并采用XRD、SEM和TEM测试技术对材料进行表征.将其作为阴极催化剂应用于微生物燃料电池,电池的产电功率为190.7 mW·m~(-2),远高于使用单一Ni_(0.85)Se和碳纳米管材料,可达到使用铂碳的68.5%.由于铂碳的价格昂贵,所制备的Ni_(0.85)Se/MWCNT纳米复合材料具有替代铂碳开发低成本微生物燃料电池的潜力.  相似文献   

14.
在硫酸溶液中利用循环伏安法在燃料电池的支持电极碳纸上,电聚合导电高分子聚苯胺用于催化剂Pt的负载.聚苯胺载铂电极(Pt/PAni/C)的制备,提高了Pt的分散度,增加了Pt在电催化体系中的利用率.扫描电镜表征的结果,Pt/PAni/C上的Pt颗粒大小为0.4μm左右.通过比较乙醇的电催化氧化活性可知,Pt/PAni/C催化氧化乙醇的最大电流为16.7mA/cm^2,为直接碳载铂电极(Pt/C)最大氧化电流5.2mA/cm^2的3.2倍。  相似文献   

15.
在花状脲醛树脂基碳材料上采用两步法合成了具有多级导电网络的氮掺杂碳负载Co_(1.29)Ni_(1.71)O_4(NC/Co_(1.29)Ni_(1.71)O_4),并探究了NC/Co_(1.29)Ni_(1.71)O_4作为氧还原催化剂的催化性能及直接甲醇燃料电池的单电池性能。文中分别使用NC/Co_(1.29)Ni_(1.71)O_4及Co_(1.29)Ni_(1.71)O_4样品作为直接甲醇燃料电池阴极催化剂,PtRu/C作为阳极催化剂和聚合物纤维膜作为电解质膜,进行了单电池性能测试。在以Co_(1.29)Ni_(1.71)O_4为阴极催化剂时,电池最大输出功率密度为1.9 m W/cm~2,而以NC/Co_(1.29)Ni_(1.71)O_4作为阴极催化剂,其电池最大输出功率密度为7.4 m W/cm~2。并且在阻抗测试中,以NC/Co_(1.29)Ni_(1.71)O_4和Co_(1.29)Ni_(1.71)O_4样品作为阴极催化剂对应的DMFCs电池内阻分别为0.26Ω·cm~(-2)和0.79Ω·cm~(-2)。结果表明,具有多级导电网络结构的NC/Co_(1.29)Ni_(1.71)O_4展现了更好的导电性和氧还原催化性能。其中,NC/Co_(1.29)Ni_(1.71)O_4中的脲醛树脂基碳可以形成三维导电网络和作为催化剂负载骨架,而同时Co_(1.29)Ni_(1.71)O_4纳米片表面吸附的导电炭黑,在Co_(1.29)Ni_(1.71)O_4纳米片表面形成了新的导电网络,进一步加速反应过程中电子在Co_(1.29)Ni_(1.71)O_4纳米片上的传输,从而构筑多级导电网络,这显著提高了NC/Co_(1.29)Ni_(1.71)O_4电催化剂的本征催化活性。  相似文献   

16.
采用水热法制备出Fe_3O_4@ZIF-8核壳催化剂及碳气凝胶(CA)载体,通过扫描电镜(SEM)、透射电镜(TEM)、N_2吸附-脱附曲线等方法对催化剂及载体的性能进行表征,测出材料的形貌、内部结构及比表面积.采用Fe_3O_4@ZIF-8/CA作为电芬顿体系阴极,碳棒作为阳极,探究不同条件下罗丹明B的降解效果.结果表明,降解罗丹明B废水的最适条件是pH为7、电流密度为6 mA·cm~(-2)、催化剂负载量为200 mg、催化剂焙烧温度为750℃,在最适条件下,罗丹明B的降解率在60 min内即可达到95.6%.电极的稳定性测试实验表明,Fe_3O_4@ZIF-8/CA电极具有很好的稳定性,循环使用3次后,罗丹明B的降解率仍可达到91%.采用6 mA·cm~(-2)的最佳降解电流密度对碳气凝胶的H_2O_2产量进行测定,发现最高产量可达到84.14 mg/L,同时在降解过程的溶液中检测到·OH,由此对罗丹明B的降解机理进行了初步探讨.  相似文献   

17.
设计并组装了燃料电池寿命测试系统,对单个质子交换膜燃料电池(单电池)进行了各种寿命测试.在单电池运行过程中记录电池的工作曲线及性能曲线.了解电池的性能变化及运行状况.通过XRD、TEM和SEM等手段对运行时间为200,500,700,l000和2000的三合一膜电极(MEA)中的阴、阳极催化剂分别进行了表征,获得催化剂晶态、表面形态及颗粒大小等变化信息.考察催化剂晶胞参数、颗粒大小等变化对电池寿命及性能的影响.  相似文献   

18.
采用合成后未经提纯的粗卟啉、Co(OH)2和碳粉制备卟啉钴用于质子交换膜燃料电池阴极氧还原反应电催化剂.研究了试样组成和热处理温度等制备条件对催化性能的影响.采用薄层电极结合循环伏安法和单体燃料电池I V特性评价了所制备的电催化剂对氧还原反应的催化活性.  相似文献   

19.
金属基氧电极材料催化机理研究进展   总被引:2,自引:2,他引:0  
燃料电池作为一种高效、无污染的能源转换器件,受到广泛关注.其阴极氧还原反应是决定电池性能最重要、最关键的因素之一,也是制约其商业化的关键瓶颈因素之一.因此,研究和开发高效氧还原催化剂及其催化机理,对于燃料电池的发展和商业化进程具有十分重要的意义.在简要介绍燃料电池的基础上,综述了近年来金属基氧还原电极材料催化氧还原反应的机理,金属基氧还原电极材料包括Pt催化剂、Pt-M催化剂、杂原子掺杂碳载金属类催化剂等,总结了提高催化活性和稳定性、降低催化剂制备成本和催化剂制备工艺等方面所取得的研究结果,并指出了各类催化剂目前尚待解决的问题和发展方向.  相似文献   

20.
为降低阴离子膜燃料电池阴极氧还原反应(oxygen reduction reaction,ORR)催化剂的成本,通过简单的超声方法制备碳担载纳米Co_3O_4(Co_3O_4/C)催化剂,通过XRD、SEM手段对其结构、形貌进行表征,并评价其催化氧还原性能.结果表明,Co_3O_4/C催化剂在碱性溶液中表现出良好的ORR催化活性:随着Co_3O_4含量增加,催化活性先增加后减小;Co_3O_4含量达50%时,催化性能达到最佳,此时,氧还原反应的极化电流密度为2.93 m A·cm-2(@-0.8 V),氧还原反应的电子转移数为2.51.与传统的Co_3O_4/C相比,本实验采用超声法制备的Co_3O_4/C催化剂合成方法简单、成本低,且有较高的氧还原活性,因此,在阴离子膜燃料电池阴极催化剂中有良好的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号