首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
智能化制动试验系统的核心是建立不同编组列车首车制动压力控制模型。从气动力学方程入手,建立了不同编组列车首车列车管充排气特性数学模型,该模型考虑了编组列车除首车之外的其余车辆充排气特性对首车列车管气压变化的影响。提出通过对制动阀有效截面积的设计计算,并带入所建立的数学模型中进行仿真试验,从而对研制新制动阀以及改进或检修制动阀提供理论基础与技术指导。利用列车制动试验台得到的试验数据与仿真结果进行对比分析,验证模型的准确性,并预测了更长编组列车首车列车管的初充气及常用制动时的气压数据。  相似文献   

2.
我国目前正在研制350 km/h高速货运动车组,但大轴重高速货运动车组与多状态多属性的货物耦合作用下列车及货物的安全性未知.本文基于LS-DYNA软件,利用ALE任意拉格朗日-欧拉算法,构建列车—线路—集装器货物流固耦合大系统有限元模型,研究货运动车组在不同货物装载工况下高速通过最小半径曲线的动力学安全性能及集装器货物的安全性.研究结果表明,装载工况会影响列车及货物安全性,不同装载位置的集装器的动力学行为响应差异明显,货运动车组高速通过最小半径曲线时无脱轨风险,同时集装器固定爪不会断裂失效,货物安全;为保证列车安全服役,应提高集装器的装载率.  相似文献   

3.
为了研究制动机的制动性能,模拟制动或缓解时列车管及风缸压力变化曲线,采用MATLAB与C#开发平台的混合编程技术,能够实现输入车辆设备等参数,后台调用MATLAB进行压力计算并将结果反馈给C#,在软件界面中形象的以曲线形式实时显示出来。以列车管初充气模块为案例,开发了基于MATLAB与C#的初充气模型性能试验模拟系统。整套系统软件易于开发,操作方便,功能优良。  相似文献   

4.
列车耐碰撞系统有限元和多体动力学联合仿真   总被引:3,自引:1,他引:2       下载免费PDF全文
研究基于有限元和多体动力学技术进行列车耐碰撞系统设计的联合仿真策略.通过非线性有限元分析获得车辆吸能部件在碰撞时的力—位移关系曲线,以该曲线模拟车辆连挂之间的非线性弹簧特性,运用多体动力学技术进行了两列车的碰撞动力学仿真.通过仿真分析碰撞中列车各车辆间的作用力、变形、速度、加速度以及各个吸能部件的能量吸收等数值,实现了对新设计列车碰撞被动安全系统总体性能的评估.与高速碰撞相比,在中低速碰撞工况下,头车与第2节车体端部连接处吸收的动能占总动能的比例更高.联合仿真能较真实地模拟列车碰撞的全过程,验证了联合仿真策略的可行性.  相似文献   

5.
现代无轨列车是一种新型公路运输车辆,其融合了汽运车辆建设成本低和轨道车辆载运量大的技术优势.针对多铰接现代无轨列车车体编组多,运动自由度大,曲线路径行驶时后方车辆会偏离前方车辆的运动轨迹的问题,建立了跟随误差模型,分析影响路径跟随性的因素,提出一种曲线路径行驶的路径跟随策略.采用航向角预测跟随控制策略,设计中间车轴的铰接角和后车轴的转向角控制规律,以增量PID算法补偿阿克曼转向模型误差,提高系统稳定性.最后在圆曲线路径和"S"曲线路径工况下测试车辆各轴的行驶轨迹.仿真结果表明:车辆的位置跟踪误差保持在0.03 m以内,航向跟踪误差最大在4.5°以内,车辆具有较好的路径跟随性能.  相似文献   

6.
为了研究关门车对空重车混合编组货运列车安全性的影响规律,根据车辆系统动力学理论和列车动力学理论,建立了机车+16重车+空车+31重车+空车+16重车编组的空重车混编列车动力学模型,并分析了列车中存在关门车时在直线和曲线线路上分别以80 km/h、85 km/h、90 km/h制动初速制动时,列车中各车辆的脱轨系数、轮重减载率的变化情况。结果表明:列车中的关门车及其他车辆的脱轨系数、轮重减载率都符合《机车车辆动力学性能评定及试验鉴定规范》(GB/T 5599—2019)标准的规定;当关门车为空车时,其脱轨系数以及轮重减载率均明显大于列车中重车关门车和其余车辆的值;当列车中的关门车是重车时,其脱轨系数稍大于列车中其余车辆的脱轨系数,但轮重减载率与列车中其余车辆的值无明显差异。随着制动初速的增加,列车中所有车辆的脱轨系数和轮重减载率都随之增大;曲线运行时的脱轨系数和轮重减载率都大于直线线路上运行时的值。  相似文献   

7.
为探究汽车列车行驶过程中牵引车单元和半挂车单元的相互影响机理,通过整车行驶稳定性动力学分析建立了半挂汽车列车11自由度动力学模型,并利用Matlab对建立的模型进行了仿真分析;采用汽车列车实车行驶稳定性检测试验验证了整车动力学模型和数值仿真的正确性. 研究结果表明:路况良好时,两车辆单元侧向加速度与横摆角速度大小接近,半挂车运动响应略有滞后;汽车列车发生侧翻的可能性较大,而不易发生侧滑和折叠事故;车辆侧翻时,半挂车车轴首先提升,其次是牵引车后轴,牵引车前轴最后提升.  相似文献   

8.
一种新的汽车列车动力学建模方法   总被引:1,自引:0,他引:1  
提出了一种建立汽车列车动力学模型的新方法,即利用Newton定律和Lagrangian方法分别建立车辆系统的平动和横摆微分方程,模型建立过程中不考虑车辆之间的约束力,从而大大降低了模型建立的复杂程度.以牵引车-半挂车辆组合形式为例,用该方法建立了其侧向动力学模型,并利用该模型对某型号半挂汽车列车进行了仿真试验.该方法同样适用于其他组合形式的汽车列车动力学模型的建立.  相似文献   

9.
针对快捷重载货运列车运行过程中运行不平顺、振动剧烈等问题,基于有限元模态分析和多体动力学刚柔耦合分析基本理论,利用Ansys和Simpack联合仿真分析方法,建立考虑转向架和车厢弹性的整车刚柔耦合动力学模型,模拟货车行驶过程,分析关键位置振动响应;利用时频分析和频响分析得出结构振动较大的原因,并通过理论分析找出结构优化的方法,设计新型轮对定位结构和调频质量阻尼器结构.结果表明:车厢和侧架的弹性共振是导致车辆系统振动剧烈的原因,新型轮对定位结构能够很好地抑制轮对和转向架的垂向和横向振动,车厢中部调频质量阻尼器的使用能够有效抑制车厢浮沉振动.因此,振动传递特性分析是研究车辆振动的有效手段,得出振动能量与激励和系统传递的相关性,本文提出的两种改进结构设计可为快捷重载货运列车的振动控制提供技术支持和应用参考.  相似文献   

10.
为了获得在汽车工程开发中更加直接、有效地平顺性分析及试验方法,研究了振动传递特性理论.首先应用1/4车辆振动模型推导传递函数,并对比分析在不同设计参数的结果差异.然后构造不同的特征路面输入工况,采用整车四立柱振动试验台进行实车试验,试验中采集车辆不同位置的加速度信号,用于研究输入输出的传递特性.最终研究了适合于前期仿真分析和实车试验验证的平顺性研究方法.对比分析及试验结果表明分析和试验对应的传递特性曲线能够反映车辆的平顺性能优劣.可见研究方法可用于平顺性工程开发及测试.  相似文献   

11.
面向制动踏板感觉,考虑结构间隙、弹簧预紧力、摩擦力、反作用盘刚度、气体质量流量变化以及制动液体积弹性模量变化,建立了包含关键结构件、气体和液体的真空助力器-制动主缸复杂系统动力学模型.在无真空助力、无/有制动液工况下,分别对真空助力器和制动主缸进行试验,辨识了模型的关键参数.在此基础之上,开展了面向制动踏板感觉的真空助力器-制动主缸系统特性仿真,以进程阶段真空助力器推杆力-行程、主缸油压-行程和主缸油压-推杆力形成的3象限图为评价体系,利用试验分别验证了制动主缸模型、真空助力器机械系统模型和真空助力器-制动主缸系统模型的有效性.  相似文献   

12.
空气动力制动制动风翼纵向位置制动力规律   总被引:4,自引:1,他引:3  
分析了全列车均装制动风翼时,不同纵向位置处制动风翼周围流场特性,数值计算得到迎风面第1块制动风翼产生的制动力最大,其余制动风翼产生的制动力逐渐减小,且减小幅度逐渐减慢的制动力规律.结合某高速列车车型,考虑减少受电弓影响,分析受电弓车辆不装制动风翼时,纵向位置各制动风翼产生制动力规律,并同每辆车均安装制动风翼时制动力规律进行对比.最后,对空气动力制动产生制动力效果进行了分析.  相似文献   

13.
液力减速器制动性能及其两相流分析方法研究   总被引:8,自引:2,他引:6  
为对车用液力减速器在制动过程中制动性能进行准确预测,在全充液的单一液相流动到不充液的单一气相流动的整个工作过程中,对于无内环的液力元件采用混合入、出口的边界条件处理方法,对充液率分别为100%、80%、60%、40%及20%时的工况分别进行CFD液力减速器内流场数值模拟,获取不同充液率和不同转速下的制动性能曲线,并得到对应不同工况的速度和压力场分布特性.结果表明,CFD数值模拟可以较为准确地预测制动性能,并且混合入、出口的边界条件处理方法更符合无内环叶轮机械内部的实际流动本质.  相似文献   

14.
为准确获取液力变矩-减速装置的制动特性,建立了某型液力变矩-减速装置制动工况下各叶轮及辅助液力减速器流道模型。运用CFD技术分析了液力变矩-减速装置泵轮、涡轮闭锁状态下在1000~2000 r/min转速时的各叶轮及辅助液力减速器流道内部速度流线、压力场分布特点,并进行了制动特性仿真计算。仿真结果与实验结果对比计算误差在10%以内,表明仿真方法和仿真模型准确、可靠。  相似文献   

15.
运用有限元分析软件建立浮动蹄式制动器和传统蹄式制动器的有限元模型,选择摩擦片与制动鼓的8个偏心位置进行有限元分析,得到偏心量-制动力矩曲线关系图;为验证理论分析的正确性,利用Adams动力学软件进行2种制动器的动力学分析,并进行了车辆台架试验,其结果与有限元分析结果一致。分析结果表明:偏心误差改变时,浮动蹄式制动器仍能够保证总的制动力矩基本不变,降低了制动器对汽车跑偏的影响,而传统蹄式制动器总的制动力矩有很大的变化,易发生制动跑偏;浮动蹄式制动器对于减小车辆制动跑偏有明显的优越性。  相似文献   

16.
建立了制动盘有限元模型,仿真得到制动盘前五阶弹性模态;对制动盘进行模态试验,阐述了制动盘模态试验的参数选择、测点布置、模态置信度判断准则,并通过综合频率响应函数和模态置信准则验证了试验结果的可靠性;仿真与试验得到的制动盘模态振型、模态频率等结果误差很小,二者基本一致。结果表明,所建立的制动盘有限元模型可用于约束状态下制动盘振动和噪声性能的预测。  相似文献   

17.
研究了电磁旋转涡流制动器制动力矩控制方法。利用磁路分析法得到了制动力矩的计算公式,以及制动力矩与励磁电流及列车速度的数学关系,从而确定制动力矩控制系统的总体方案,阐述系统工作原理,说明系统各主要组成模块,建立其仿真模型,并根据系统总体方案完成模块集成。介绍了PID(比例-积分-微分)控制、模糊控制、模糊自适应PI控制3种制动力矩控制算法,说明控制器设计步骤。完成仿真计算,并对结果进行对比分析。结果表明,相对于开环控制,3种控制算法都能有效地控制制动力矩。此外,无论是系统瞬态性能指标,还是稳态性能指标,都是模糊自适应PI控制表现最佳,模糊控制次之,PID控制相对最差。  相似文献   

18.
全动力液压制动系统的动态模拟与实验   总被引:1,自引:0,他引:1  
在对串联式液压制动阀结构与性能分析的基础上,建立了全动力液压制动系统动态数学模型,并就制动阀结构参数对系统动态性能的影响进行了仿真分析.通过系统动态响应特性台架实验,验证了仿真模型,得出了各种制动工况对系统响应特性的影响规律.经工业性应用,设计研制的工程车辆全动力制动系统性能满足ISO 3450标准要求.  相似文献   

19.
应用扫描电镜(SEM)对火车刹车闸瓦进行了失效分析,并得出了以下结论:闸瓦的磨损主要是由疲劳块状剥落及磨粒磨损所造成;疲劳剥落是由于在应力作用下,次表层的磷共晶破碎,以及石墨尖端造成的应力集中,使它们周围的基体萌生裂纹并扩展的结果;闸瓦的块状剥落与磨料磨损相互促进加剧了磨损。最后提出了闸瓦磨损的物理模型,进一步说明了闸瓦的磨损过程。  相似文献   

20.
空气制动是普通列车主要的制动方式,紧急制动限速是保障列车安全运行的关键。在采用不定积分求出列车在制动条件下制动距离与速度的函数关系后,结合紧急制动距离和不定积分的定解条件,得到求解空气紧急制动限速实际上是求以紧急制动限速为变量的一元超越方程的根。采用牛顿迭代法,对方程进行求解。该方法同时解决传统求解紧急制动限速过程中有效制动距离分段累加和速度试凑法效率低的两个问题。最后通过仿真计算证明方法具有较好的可靠性和实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号