首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
为提高三轴重载汽车在转向制动工况下的安全性能,基于TruckSim汽车仿真软件,搭建了三轴重载汽车整车模型。对三轴汽车在转向制动工况下的力学特性进行了分析,基于分析结果设计了削减制动力的三轴汽车转向制动协同控制器。对于车辆处于不足转向的情况,设计了滑移率分配的模糊控制器。采用TruckSim与Simulink联合仿真,对ABS控制和协同控制在转向制动工况下的控制效果进行了探讨。仿真结果表明,在转向制动工况下,与ABS控制器相比,协同控制器提高了三轴重载汽车转向制动工况下的操纵稳定性和制动安全性。  相似文献   

2.
为了提高三轴重载汽车的制动安全性能,搭建了制动动力学模型,基于TruckSim建立了三轴重载汽车整车模型.在对Burckhardt"轮胎-路面"模型和以往自寻最优制动理论研究的基础上,设计了应用于整车模型的三轴汽车自寻最优ABS控制器.采用硬件在环实验的方法,在高附路面、低附路面和对开路面3种工况下验证了控制器的可行性,加入传统ABS作为比较.实验结果证明,在3种工况下,自寻最优ABS将车辆控制在不同的滑移率下,低附路面下的制动效果最明显,制动时间减少0.96s,制动距离减少2.77m,横摆角速度峰值减少1°/s,说明自寻最优ABS可以自动搜索车辆当前路面下的最优滑移率,提高了三轴重载汽车的制动性能和制动过程中的稳定性.  相似文献   

3.
提出辅助制动系统进行汽车稳定性控制试验,运用Matlab/Simulink搭建辅助制动系统与实车系统的动力学关联仿真系统.以车辆运动轨迹和车辆质心侧偏角表征车辆状态,采用制动驱动集成稳定性控制策略,分别对实车系统和装有辅助制动系统的试验系统在不足转向、过多转向两种试验工况下稳定性控制性能进行分析和验证.进而以辅助制动系统验证车辆稳定性控制的有效性,在没有ESP控制或ESP控制系统失效时能有效辅助车辆行驶;在有ESP控制系统时行驶稳定性控制性能与实车系统在两种试验工况下均具有显著的一致性.同时,辅助制动系统作为汽车行驶稳定性控制试验装置其设计是科学的、可行的.  相似文献   

4.
为研究多车激励作用下大跨径桥梁桥面铺装层的动力学响应,建立含有Fiala轮胎的多刚体实车模型以及大跨径桥梁有限元精细模型,考虑桥面随机不平顺激励,构建包含桥面铺装层的车-桥刚柔耦合系统动力学模型。计算准静态条件下桥梁控制截面的挠度,并与现场静载试验进行对比,验证了所建车-桥耦合模型的正确性与计算结果的有效性。研究不同编队多车荷载作用下波形钢腹板连续箱梁桥铺装的动力响应,不同工况对于车辆后轴悬架力和垂向轮胎力的影响,结果表明:多车荷载相比于单个车辆荷载所引起的动力响应更大,更容易引起桥面铺装和桥梁结构的早期损伤;在车辆数量相同、车速相同、前后车距相等的情况下,车辆行驶编队不同时所引起的桥面铺装层最大挠度、最大纵向应力和最大横向剪应力分别增大了19.7%、23.5%和8.0%,且最大纵向拉应力和剪应力均发生在防水混凝土-混凝土梁之间,容易产生早期疲劳开裂;车辆后轴悬架力随着载重增加而增大,垂向轮胎力随着速度和载重增加而增大。  相似文献   

5.
ADSL驾驶模拟器动力学模型的改进与验证   总被引:1,自引:0,他引:1  
为了提高ADSL驾驶模拟器逼真度,研究开发了新版转向系统模型、车轮模型、制动系统模型.转向系统模型为力输入模型并计算了系统的弹性;车轮模型考虑了气胎弹性、接地印迹块动力学和接触模型;制动系统模型采用制动力矩动静摩擦分离的计算方法;从而实现了左右转向车轮协调计算、轮胎力准确计算及stand-still(起步-停车)工况、制动到零速等精确工况的仿真.通过新版模型、2000年版模型的操纵稳定性工况的仿真结果与场地试验结果的对比,验证了模型的正确性,模型精度得到了提高.  相似文献   

6.
为分析虚拟轨道列车在站间全行驶状态下(牵引、匀速、制动)的动载特性和道路友好性,基于车辆动力学、轮胎动力学、非线性动力学等理论,构建了随机路面激励下的虚拟轨道列车动力学模型,该模型考虑了车辆之间的耦合作用和轮胎-路面的相互作用,并对该动力学模型进行了验证。通过理论分析和数值计算,对虚拟轨道列车在站间全行驶状态下的动载特性和道路友好性进行了探究,同时分析了运行速度、路面等级和加/减速度的影响。结果表明:全行驶状态下的各轮纵向力趋于稳定值,牵引和制动状态下大小相等,方向相反,匀速状态下趋于零。牵引状态下车辆1前轴垂向动载荷均方根值最大,而制动状态下车辆3后轴最大。相较于牵引和制动状态,匀速状态下的道路友好性更优。垂向动载荷均方根值和道路友好性均与运行速度、加/减速度均呈正相关,与路面等级呈负相关。研究内容能够为虚拟轨道列车的运行模式提供建议以提高运行效率,同时,能够为沥青路面的选型提供指导以减缓道路损坏。  相似文献   

7.
通过理论推导、经验公式总结和参数测定等方法得到用于HIL的车辆系统数学模型,其中包括7自由度四轮车辆制动动力学模型、液压回路模型、制动器模型、Dugoff轮胎模型和ABS控制模型,并在MATLAB/Simulink环境下进行建模与仿真.将液压制动回路、压力调节器和控制器以实物形式嵌入仿真系统,在dSPACE系统平台下对所建车辆系统模型进行ABS HIL仿真试验.试验结果表明,通过在线参数调整确定逻辑门限值,采用ABS实车道路,所建车辆系统模型是合理的.  相似文献   

8.
基于阿克曼原理,采用向量法推导车辆各轮转角间运动学约束关系,并结合全轮转向三轴车辆2DOF动力学模型,重构车辆状态空间方程,建立车辆全轮转向最优控制模型。考虑典型双移线和圆-直线的复合轨迹工况下,基于Matlab/Simulink和TruckSim联合仿真研究车辆质心侧偏角、横摆角速度、轮胎力和轮胎滑移率等变化规律。结果表明:相比于传统前轮转向车辆,全轮转向车辆具有更好的操作稳定性;文中最优控制策略能够减小车轮轮胎力和滑移率,进而有效降低胶轮磨损。  相似文献   

9.
针对某款微型电动汽车平顺性不尽理想的情况,以实车参数为依据,应用多体系统动力学软件ADAMS建立包含人-座椅模型的微型电动汽车仿真模型。分别对实车及整车仿真模型完成相同频率及振幅的正弦激振试验,提取实车驾驶员座椅端面处及整车仿真模型人-座椅模型座椅端面处的时域信息进行对比分析,验证所建模型的正确性。最后,参照平顺性试验方法 GB/T 4970—2009完成整车不同车速满载工况、B级路面平顺性仿真试验,对该车行驶平顺性进行分析研究。结果证明,该微型电动汽车当车速超过50 km/h时,不具有理想的行驶平顺性能。  相似文献   

10.
为有效解决刚性或半刚性悬架工程车辆行驶过程中驾驶舒适性差、振动噪声污染严重等问题,以轮式装载机为研究对象,在建立具有行驶稳定系统的装载机ADAMS整机动力学模型基础上,应用路面随机激励的方法,分析行驶稳定系统中蓄能器初始充气压力、额定容积及节流阀水力直径等主要结构参数对整机行驶平顺性的影响,掌握了不同行驶工况下各参数对减振性能的影响规律.该研究结果为高速工程车辆行驶稳定系统的设计提供了依据.  相似文献   

11.
基于对多轴轮式车辆的最小转向半径战技指标的要求,提出了一种适用于多轴机电复合分布式驱动车辆的最小转向半径控制系统,并详细介绍了该模式下的整车控制策略,当车辆以大前轮转角低速转向时,后两桥驱动电机产生“外正内负”的力矩辅助车辆转向从而减小最小转向半径.为验证系统性能,文中建立了包含车体纵向速度、侧向速度、横摆角速度及8个车轮旋转的11自由度整车动力学模型,并采用Gim轮胎模型表达了轮胎的非线性力学特性.虚拟样机仿真的结果表明,在该控制策略下,车辆的最小转向半径可减小10.31%,转向机动性能得到大幅度提高.   相似文献   

12.
针对制动工况中的汽车,建立9自由度车辆动力学模型,并基于车辆动力学模型,采用比例-积分(PI)稳定性控制逻辑算法对车辆的行驶状况及运动姿态进行控制.最后,利用CarSim和MATLAB/Simulink联合仿真平台,结合低附着系数路面和对开路面的紧急制动工况进行离线仿真.仿真结果表明:采用稳定性控制逻辑算法可以改善车辆的纵向运动状态,有效地抑制车辆的侧向运动,有助于提高车辆的稳定性.  相似文献   

13.
为了进一步提高混合动力汽车电液复合制动系统协调性能和制动能量回收率,以一款新型双电机插电式混合动力汽车(PHEV)为研究对象,针对电机制动系统和液压制动系统工作特性的不同,提出符合其电液复合制动系统耦合工作特性的制动能量分配与控制策略。在保证制动安全性的前提下,以最大程度利用电机再生制动力为目标,建立电机损耗模型及可动态控制压力的液压制动系统模型,模拟实际电液复合制动系统的工作特性,通过控制电机制动系统电流实现损耗最小,并且调节速比实现电机与无级变速器(CVT)联合工作效率最优。利用比例-积分-微分(PID)控制调节液压制动系统高速开关阀,实现轮缸压力动态协调控制。制定基于阈值实时优化的制动力分配策略及基于制动强度修正的协调控制策略,利用MATLAB/Simulink和AMESim仿真平台对电机、液压制动系统及传动系统建立整车动力学模型,通过对连续制动及制动突变等制动工况进行联合仿真试验验证该控制策略的性能。研究结果表明:该控制策略可充分发挥双电机制动回收系统的优点,大幅提高制动能量回收率,有效兼顾汽车的制动安全性和平顺性,减小制动力波动;初速度为60 km/h,制动强度由0.6突变至0.3时,最大冲击度由93.36下降为17.52 m/s~3,满足汽车平顺性的要求;在城市车辆排放测试(UDDS)循环工况下,实际能量回收功率最高可增加0.32 kW。  相似文献   

14.
建立了整车8-DOF系统动力学模型,考虑了主动悬架控制,并增设了主动座椅控制,设计了车辆主动悬架系统的LQG控制器。基于Matlab仿真平台建立了整车8-DOF系统动力学仿真模型,对所得最优控制策略下的动态响应进行了仿真验证。仿真结果表明:为了改善人椅系统质心及车身质心的跳振性能需要在一定程度上弱化各轮轮胎动位移性能。从控制效能上来看,该最优控制器能够满足各行驶状态下对悬架性能的要求,改善了车辆的行驶平顺性。  相似文献   

15.
建立了1/2车辆主动悬架系统动力学模型和路面输入模型,将PID控制和模糊控制并联,设计了主动悬架系统模糊PID控制器。在MATLAB/Simulink中的仿真结果表明,模糊PID控制的主动悬架在车身加速度、俯仰角加速度、悬架动行程及轮胎动位移等方面明显优于被动悬架以及单纯的模糊控制和PID控制,较好的改善了车辆的行驶平顺性及乘坐舒适性。  相似文献   

16.
车辆电子稳定系统能有效提高车辆在极限工况下的方向稳定性.针对传统直接横摆力矩控制(DYC)没有考虑轮胎附着力极限的局限,提出一种基于轮胎动力动态估计(TDE)算法的新型车辆电子稳定控制系统(ESP),在此基础上,通过主动前轮转向(AFS)协同控制,最大化利用车轮附着力.采用多元回归统计算法设计TDE控制器,采用基于统计数据的多项式拟合获得车轮附着力边界极限和最优动态滑移率上限值;采用模糊逻辑算法设计AFS控制器,补偿因附着力达到极限引起的横摆力矩不足.仿真结果表明,通过与AFS的协同控制,新型ESP能够在改善车辆的方向稳定性的同时,大幅降低车轮制动控制力,减少对车辆纵向速度的影响.  相似文献   

17.
运用广义能量法和能量相平面方法分析了车辆转弯制动过程中的非稳态特性和能量转换特性.结合魔术公式轮胎模型,建立了考虑载荷转移的车辆9DOF非线性动力学模型.基于VBOX惯性测量技术搭建车载稳定性测量系统验证了模型的可靠性,运用广义能量法和相平面分析方法建立了车辆能量转换分析模型.在Matlab环境下仿真分析了转弯制动工况下车辆能量时变及转换特性.结果表明,车辆制动初始时间区域为车辆失稳和施加控制的关键区域,在较小转向角制动时以横摆控制为主,转向角较大时应兼顾侧向控制和横摆控制.  相似文献   

18.
基于虚拟样机技术的铰接式车辆动力学建模   总被引:1,自引:2,他引:1  
在ADAMS/View软件环境下,建立了某工程车辆多体动力学模型,提出了随机路面的建模方法,进行了不同车速和不同随机激励输入下的车辆平顺性评价虚拟试验.通过与相同实验条件下实车平顺性道路试验结果比较,验证了该模型在评价车辆平顺性方面具有较高的精度和可信度。  相似文献   

19.
考虑横向坡度、纵向坡度与合成坡度道路特征参数对车辆动力学与轮胎垂直载荷变化的影响,基于15自由度车辆动力学模型,建立横向坡度、纵向坡度与合成坡度车辆动力学与轮胎垂直载荷变化模型,联立转向系、制动系、动力传动系、车轮与悬架模型,构建整车行驶动力学仿真模型,并在不同横向、纵向、合成坡度以及车速下进行仿真分析比较。结果表明:横摆角速度受纵向坡度的变化影响很小,但随横向与合成坡度的增大而逐渐减小,且在相同坡度下,随着车速的增大,波动幅度增大,峰值增大;前轮侧偏角受纵向与合成坡度的变化影响很小,但随横向坡度的增大而增大;侧倾角速度随横向与合成坡度的增大而先减小后增大,且在相同纵向坡度下,随车速的增大,波动幅度增大,峰值增大。  相似文献   

20.
设计了某车型前麦弗逊式悬架,通过搭建麦弗悬架动力学模型并对其进行动力学仿真及平顺性仿真分析,得到车辆以不同车速通过随机路面的振动分析数据,以此评价车辆行驶平顺性.通过逐步改变悬架刚度和阻尼值分析对车辆行驶平顺性的影响,进而得到提高车辆行驶平顺性的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号