首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
通过共组装单分散二氧化硅胶体和碳点的方法制备一种新型的荧光光子晶体薄膜,二氧化硅胶体粒子的粒径为180 nm,合成的碳点粒径为1 2 nm,共组装后制备的光子晶体薄膜同时具有鲜艳的色彩和良好的荧光性能.此薄膜的发射光谱在480 nm左右,可以将其用于染料敏化太阳能电池的背反射层.未加背反射层的染料敏化太阳能电池的转化效率为4.01%,而具有荧光光子晶体作为背反射层的染料敏化太阳能电池的转化效率达到4.27%,由此可以将光电转换效率提高6.2%.  相似文献   

2.
采用两步旋涂法制备钙钛矿甲胺碘铅(CH3NH3Pb I3)薄膜,再通过乙醇蒸气氛围热退火的方法处理薄膜.扫描电镜图像、X线衍射谱、紫外可见吸收光谱等表征结果表明,乙醇热氛围退火促进CH3NH3Pb I3晶体的生长,增大晶体尺寸,增强薄膜结晶性.将使用乙醇蒸气热退火方法制备的薄膜组装成太阳能电池,器件短路电流从15.59 m A/cm~2增大到17.17 m A/cm~2,光电转换效率从10.32%提高至11.07%.  相似文献   

3.
采用射频磁控溅射两步法制备出CdS/ZnO复合膜,并通过XRD、SEM、AFM、UV-vis、IPCE表征了制备的薄膜。SEM及AFM测试表明,相比于单独的CdS薄膜,CdS/ZnO复合膜的表面形成了更加明显的介孔结构;光电转换效率测试表明,相比单独的CdS薄膜,CdS/ZnO复合膜表现出更高的转换效率,0V(vs. Ag/AgCl)偏压下,IPCE值由36.1%(410nm)增大到66.1%(410nm)。光电转换效率的增加一方面是由介孔表面引起的光吸收增加以及表面活性位增多引起;另一方面,两种半导体的复合形成异质结,异质结的形成促进了光生电子-空穴的分离,提高了薄膜的光电转换效率。  相似文献   

4.
钱波  陈三  魏俊伟  陈坤基  徐俊  李伟  马忠元  黄信凡 《江西科学》2005,23(4):317-318,342
利用一维光子晶体带隙结构对光发射特性进行调制,采用掺杂光子晶体微腔限制电磁场从而控制材料中的光传输。采用不同组分的氢化非晶氮化硅(a-SiNx:H)薄膜作为介质层和发光层,由等离子体化学气相淀积(PECVD)方法制备出一维全a-SiNx:H光子晶体微腔。观察到微腔对于发光层a-SiNx:H薄膜光致荧光显著的调制作用,发光峰的半高宽从原始的208nm强烈的窄化为11nm,峰值强度提高了2个数量级。品质因子为69。通过透射谱测量,清晰地观察到710nm处的谐振峰出现在一维光子晶体带隙中,进一步证实了微腔的选模特性。  相似文献   

5.
为了探究量子点共敏化对TiO_2纳米管阵列太阳能电池的光电转换效率的影响,采用连续离子层沉积法制备了不同循环沉积次数的Cd Se量子点敏化和Cd Se/Cd S量子点共敏化TiO_2纳米管阵列光阳极,并采用能谱分析、扫描电子显微镜、X射线衍射、紫外吸收光谱等方法对光阳极进行了表征。以制得的光阳极组装了太阳能电池,并对其光电转换效率和伏安特性进行了测试。研究结果表明:制备的Cd Se/Cd S量子点共敏化太阳能电池比Cd Se量子点单独敏化的太阳能电池更有效地吸收长波太阳光,在波长为575 nm处最大光电转化效率达到35.3%,对640 nm波长的光仍然有超过10%的量子效率;最大短路电流密度为5.45 m A/cm2,开路电压为0.64 V,光电转换效率达到1.95%,Cd Se/Cd S量子共敏化太阳能电池光电转换效率比Cd Se量子点单独敏化的提高了约2倍。  相似文献   

6.
建立高灵敏检测易挥发有机溶剂的方法.采用牺牲模板法制备了具有三维大孔结构的SiO2反蛋白石光子晶体薄膜,填充具有聚集诱导发光效应(AIE)的聚四苯基乙烯衍生物(TPEP),得到对四氢呋喃气体敏感的光子晶体荧光传感薄膜.该薄膜在464 nm处发射荧光,当置于四氢呋喃气体氛围中,发生荧光猝灭.选择光子禁带蓝带边与荧光发射波...  相似文献   

7.
报道了一种罗丹明B衍生物(RM)填充的SiO2反蛋白石光子晶体薄膜作为荧光传感平台,实现了对Hg2+的高灵敏、高选择性、可重复性检测.RM与Hg2+发生专一的配位作用,其产物RM-Hg2+在585 nm处发射荧光.当所选光子晶体的光子禁带蓝带边与荧光波长重叠时,光子晶体的慢光子效应能够有效增强RM-Hg2+的荧光强度,...  相似文献   

8.
构筑挥发性酸碱气体检测荧光传感薄膜.利用慢光子效应增强荧光的特性,在具有三维大孔结构的SiO2反蛋白石光子晶体孔隙填充功能有机小分子(HPQ-AC),实现了对NH3和HCl气体的高效连续检测.将所制的传感薄膜置于NH3氛围中,30 s内在496 nm处发射强的荧光.通过选择光子禁带蓝带边与荧光发射波长重叠的光子晶体,实...  相似文献   

9.
使用丝网印刷法制备了阳极膜厚为22.5μm的大面积ZnO染料敏化太阳能电池(ZnO-DSC),活性面积18.24cm2。在ZnO浆料中添加乙酸可以提高阳极薄膜的染料吸附量,添加乙酸后染料吸附量由1.867×10-7mol/cm2增至2.832×10-7mol/cm2。在ZnO薄膜表面引入超薄TiO2保护层提高了ZnO薄膜与导电玻璃基底的粘接力。将上述两种方法同时应用于制备ZnO-DSC,光伏性能测试结果表明,制得的DSC短路电流和开路电压分别提高至11.95mA/cm2和0.69V,电池的光电转化效率由未经任何处理时的2.56%提高到3.47%。  相似文献   

10.
在超高真空化学气相沉积设备上,利用低温生长的硅锗和锗作为缓冲层,在SOI衬底上成功外延出高质量的锗薄膜.基于谐振腔增强型探测器(RCE)理论,模拟优化了有源层和上下反射层的厚度尺寸.传输矩阵方法计算结果显示:将SOI衬底自有二氧化硅、硅层作为一对下反射层的情况下,取2对SiO_2/Ta_2O_5作为上反射层时,量子效率可以达到接近56%.制作的SOI基锗光电探测器,暗电流密度为0.65 m A·cm~(-2).在8 V的偏压下,探测器在1 550 nm处响应度1.45 m A·W~(-1),可以观察到探测器的共振现象.  相似文献   

11.
提出了基于磁流体光子晶体的微腔,并对其形成过程进行了理论解释,进而研究了该微腔的传感特性,计算了其光透射特性.分析了薄膜厚度分别为6μm和0.94μm时磁流体光子晶体微腔的磁场响应特性.研究结果表明,随着外加磁场增加,这两种结构的光子晶体谐振峰中心波长分别蓝移了4.130μm和0.076μm;磁场响应的最大灵敏度分别为243 nm/m T和3.8 nm/m T.这种基于微腔的传感系统具有易调谐、制备简单,且灵敏度高等优点,为胶体光子晶体在传感领域的应用提供了新的思路.  相似文献   

12.
利用光学传输矩阵理论对一维ZnO/MgF2光子晶体的光子带隙进行了研究。文中给出了一个由ZnO和MgF2组成的一维光子晶体模型,并在此基础上详细讨论了光子晶体的周期数,对光子带隙的形状及震荡频率的影响,以及薄膜的厚度对光子带隙的带隙宽度、中心波长等的影响。讨论了在保持光子带隙的中心波长不变的情况下,通过改变两种薄膜的厚度使得带隙宽度达到最大值的条件,并且从物理机制上给出了相应的解释。当两种薄膜的折射率和厚度的乘积相等时,所获得的光子带隙最大,当这个乘积等于93 nm时,所获得的光子带隙的中心波长在385.05 nm处,带隙宽度为138.7 nm。  相似文献   

13.
为了减少荧光集光太阳能光伏器件的非全反射荧光逃逸,使荧光有效传输到侧面的太阳能电池上,可以在光波导介质与空气界面铺设一层二维光子晶体,利用光子晶体的光子带隙实现荧光的全反射,有可能提高光波导对荧光的收集效率.这里用有限元分析软件Ansys计算了不同折射率、不同形状(圆柱、四棱锥、四方柱、六角柱、圆锥)正方晶格单层二维光子晶体0~45°间TE波和TM波的反射系数.结果表明,当光波导介质为玻璃(折射率1.5)、光子晶体介质为TiO2(折射率2.2)、形状为四方柱时,光子晶体在0~13°的范围内形成带隙,相应的理论收集效率从74.5%提高到77.1%.  相似文献   

14.
以TiO_2/钙钛矿(PVSK)/P3HT的n-i-p型钙钛矿电池作为研究对象,研究了TiO_2薄膜退火温度对TiO_2薄膜的结晶性、基于此的钙钛矿薄膜的形貌以及光伏器件性能的影响,比较了P3HT的掺杂以及不同批次P3HT材料对钙钛矿太阳能电池器件性能的影响。结果表明:TiO_2薄膜的退火工艺及P3HT的批次对器件性能影响较大。TiO_2薄膜的制备工艺设为退火温度为300℃,退火时间为45min,提高TiO_2的退火温度到500℃,钙钛矿太阳能电池的效率可提高到11.27%.通过优化钙钛矿薄膜厚度为190nm,制备得到光电转换效率为6.77%的钙钛矿薄膜光伏电池。基于低温TiO_2为电子传输层、掺杂P3HT为空穴传输层的器件性能为开路电压VOC=0.98V,短路电流J_(SC)=19.94mA/cm~2,填充因子f_F=0.42,转换效率η(PCE)=8.18%.TiO_2电子传输层和P3HT空穴传输层的系统优化对制备高性能n-i-p结构钙钛矿电池具有重要意义。  相似文献   

15.
为了探究有机荧光材料在微纳尺寸上的荧光特性,采用低真空物理气相沉积方法制备了茶碱(TP)和2,3,5,6-四氟对苯二甲酸(TFA)有机纳米薄膜。通过对TP和TFA薄膜的荧光性质进行表征发现:与TP粉末相比薄膜的荧光发射峰由1个增加到4个,发射波长范围拓宽了100 nm,TFA的荧光发射峰之间的相对荧光强度发生了变化,与原料粉末相比在408 nm处的荧光发射峰蓝移了7 nm,362 nm处的荧光发射峰红移了3 nm。另外随着纳米薄膜厚度的逐渐增加,其荧光效率也逐渐增大。通过对TP和TFA纳米薄膜的表面形貌表征发现:随着薄膜厚度的增加,颗粒的聚集形态尺寸逐渐增大,从而验证了荧光效率随膜厚增加而逐渐提升的特性。  相似文献   

16.
采用溶胶凝胶法,使用氨水催化前驱物正硅酸乙酯(TEOS)水解制备SiO2胶体.通过改变溶液浓度调节胶体粒子大小,旋涂低温制备不同折射率纳米多孔SiO2薄膜.使用激光粒度仪和透射电镜分析胶粒大小及分布,粒子分布均匀且在几十纳米范围;使用椭圆偏振仪、紫外/可见分光光度计、扫描电子显微镜表征减反射薄膜的光学性质和表面形貌,发现薄膜表面呈颗粒状且折射率较低,在400nm至800nm波段的透过率平均提高了4%.将溶胶涂在CdS/CdTe太阳电池基底背面,测试结果发现,使用减反射薄膜后电池吸收波段内量子效率(QE)提高,短路电流密度提高了4.45%;光电转换效率由11.50%提高到11.94%.  相似文献   

17.
合成一种新型寡聚噻吩类有机小分子2,5-二[5-(4′-辛基-[2,2′-二噻吩]-5-基)-3-己基-1,3,4-噁二唑-2-硫酮]噻吩(DHOT),并将其应用于太阳能电池中。研究结果表明:DHOT具有较好的热稳定性、良好的溶解性能和成膜性能;在薄膜状态下,DHOT的吸收光谱范围为300~600 nm,其最大吸收峰在425 nm处,相应的光学带隙为2.17 e V;用DHOT组装太阳能电池,其结构为ITO/PEDOT:PSS/DHOT:PC71BM/Zr Acac/Al;当DHOT与PC71BM质量比为1:1时,其能量转换效率为1.03%,对应的开路电压为0.84 V,短路电流密度为3.99 m A/cm2,填充因子为30.7%。  相似文献   

18.
采用催化热解方法制备出镓掺杂碳纳米管,并利用丝网印刷工艺将其制备成纳米管薄膜.扫描电子显微镜观察表明,纳米管直径在20~50 nm之间.对此薄膜进行低场致电子发射测试表明,其场发射性能优于同样条件下未掺杂时的碳纳米管、碳氮纳米管和硼碳氮纳米管.当外加电场为1.1 V/μm,发射电流密度为50μA/cm2;当外电场增加到2.6 V/μm时,发射电子密度达到5 000μA/cm2.对其场发射机理进行探讨.  相似文献   

19.
合成一种新的钕和丁二酸的配位聚合物,通过红外、紫外、荧光、热重、电化学和X线单晶衍射对其进行表征.晶体结构检测结果表明:中心离子钕(III)以九配位形成变形十四面体,该晶体属于三斜晶系,其中a=0.784 5(3)nm,b=0.811 4(3)nm,c=1.422 7(5)nm,α=96.933(5)°,β=97.023(5)°,γ=103.513(5)°,Z=2,V=0.863 4(5)nm3.荧光光谱显示,配位聚合物在367 nm处有一个较强的发射峰(λex=326 nm),归因于配体的π*→n跃迁;热重分析表明,配位聚合物分3步失重,最后剩余Nd2O3.电化学结果表明,在-0.4~0.3 V电势范围内,配位聚合物在0.024 V和-0.07 V处有一对不可逆的氧化还原峰,通过峰电位和半峰电位的计算公式|Ep-Ep/2|=47.7/αn(α=0.5),可以计算出转移电子数为2,由此可见,Nd(III)和Nd(V)之间的转换导致该配位聚合物具有电化学活性.  相似文献   

20.
利用提拉法生长Nd:La_(0.02)Lu_(0.98)VO_4单晶.经测试,晶体的晶胞参数a=b=0.703 7 nm,c=0.624 2 nm;a向和c向的热膨胀系数分别为α_a=4.3×10~(-6)K~(-1)和α_c=11.6×10~(-6)K~(-1).室温下测试偏振吸收和荧光光谱,结果显示:晶体在809 nm处有较大的吸收线宽5.00 nm(σ)和6.15 nm(π),较大的吸收截面4.70×10~(-20)cm~2(σ)和10.47×10~(-20)cm~2(π).在1 065 nm处有强荧光发射峰,半峰宽分别为2.27 nm(σ)和1.82 nm(π),受激发射截面σe分别为6.5×10-19cm2(σ)和13.8×10~(-19)cm~2(π),荧光寿命为102.5μs.利用未镀膜的晶片进行初步激光实验,获得1 065 nm连续和调Q激光输出.在最高泵浦功率20 W时,获得最高4.95 W的连续输出,光-光转换效率为24.8%,斜效率27.9%;在脉冲重复频率为5 kHz时,得到最高的峰值功率为61.99 kW.结果表明,Nd:La_(0.02)Lu_(0.98)VO_4晶体可能成为新的脉冲激光晶体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号