首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
制备了硅藻土含量(体积分数)为0~15%的聚丙烯/硅藻土复合材料,在室温条件下测量了复合材料的冲击强度,采用扫描电镜观测了试样的冲击断口形貌,以投影覆盖法测算了断口的分形维数,并考察了它与冲击强度之间的关系.结果表明:试样断口分形维数的测算值在2.4754~2.5230之间,分形维数与冲击强度之间强的相关性表明断口分形行为显著;断口分形维数与冲击强度之间大致符合指数关系.  相似文献   

2.
本文利用垂直截面法测量了20钢经不同形变和氮化复合处理后拉伸和冲击断裂表面的分形维数.结果表明,材料的拉伸性能(σb、σs、δ)、冲击性能(Ak)和断口表面的分形维数DF均随形变量的增加而增加.冲击断口的分形维数DF与冲击功的对数1nAk之间呈正变化的线性关系.  相似文献   

3.
对不同速度和接触压力条件下含磷蠕墨铸铁干滑动摩擦表面的表面分形维数值进行了测算 ,并研究了这些分形维数值和相应的摩擦学性能数据的关系。结果表明 ,干滑动摩擦表面属分形表面 ,分形维数可以表示摩擦表面的粗糙程度 ,分形维数和摩擦系数、磨损率之间有明显的对应关系 ,且摩擦条件和表面形貌对摩擦学性能的影响呈现出复杂的关系。  相似文献   

4.
研究JX-1型晶须增韧陶瓷断口的分形特征,测量材料断口表面的分形维数,建立分形维数与断裂韧性间的关系。根据晶须增韧陶瓷的主要增韧机制一裂纹偏转,建立了相应的分形模型,利用该模型分析分形维数与断裂韧性之间的一致性,为解释裂纹偏向的增韧效应提供一种新方法。  相似文献   

5.
使用分形维数对超高强度钢断裂韧性的研究   总被引:8,自引:0,他引:8  
作者应用分形理论研究了超高强度钢D6AC断口的分形维数DH与断裂韧性的关系,并按测定DH的数字图像法原理,试验得出试样的断裂韧性与分形维数DH成正相关,从物理角度解释了断口分形维数与材料性能之间的关系。可为分形理论拓宽其应用提供基本依据。  相似文献   

6.
废弃电路板材料断口的分形表征   总被引:2,自引:0,他引:2  
为研究废弃电路板的破坏机制,采用扫描电镜对6个典型的废弃电路板材料断口进行形貌分析.电路板外观形貌具有自相似性,表现出分形的特征.基于分形理论和计算机图像处理技术,编制计算材料断口形貌计盒分形维数的MATLAB程序.MATLAB计算程序拟合直线的线性度很好,表明电路板材料断口的分形行为显著.6个断口的分形维数不同,表明它们的复杂程度和粗糙度不同.断口3为集成电路中树脂的断口,材料断裂后有一定的凹凸面,并且有缺陷和微孔,故表面形貌最为复杂,分形维数最大,为1.415.断口 2、断口 5和断口 6外观形貌较规则,分形维数较小.断口1和断口4均为硬塑料断口形貌,有河流状花纹,断口1和断口4的表面粗糙度介于断口3与断口 2、断口 5和断口6之间.通过分形维数的计算可知6个断口纹理的粗糙和复杂程度从大到小依次为断口3,1,4,5,2和6,这与人眼观察到的结果基本一致,也进一步说明电路板及其元器件在破坏后,其断口形貌具有分形的特征.  相似文献   

7.
应用分形几何理论确定了钢-铝固液相复合板钢板打毛表面、剪切撕裂表面的分形维数及其与复合板界面剪切强度之间的关系.当钢板打毛表面的分形维数为2.36时,剪切撕裂表面的最大分形维数为2.33,相应的最大界面剪切强度为65.3MPa.采用钢丝直径为1.4mm的钢丝轮进行打毛处理是最佳打毛方式.  相似文献   

8.
应用分形几何理论确定了钢-铝固液相复合板钢板打毛表面、剪切撕裂表面的分形维数及其与复合板界面剪切强度之间的关系.当钢板打毛表面的分形维数为2.36时,剪切撕裂表面的最大分形维数为2.33,相应的最大界面剪切强度为65.3MPa.采用钢丝直径为1.4mm的钢丝轮进行打毛处理是最佳打毛方式.  相似文献   

9.
应用分形几何理论确定了钢-铝固液相复合板钢板打毛表面,剪切断裂表面的分形维数及其与笔合板界面剪切强度之间的关系,当钢板打秘一面的分形维数为2.36时,剪切撕裂表面的最大分形维数为2.33,相应的最大界面剪切强度为65.3MPa,采用钢丝直径为1.4mm的钢丝轮进行打毛处理是最佳打毛方式。  相似文献   

10.
金属断裂表面分形特性初探   总被引:2,自引:0,他引:2  
论述了近10余年来金属断裂表面分形维数的测量方法,以及分形维数与力学性能之间关系的研究成果和研究进展,综合分析了金属断面分维与金属的拉伸性能、冲击韧度、断裂韧度、材料损伤之间关系。讨论了金属断裂与分维的一些具体的内在矛盾和进一步改进的措施。  相似文献   

11.
分别用二次电子扫描线法和垂直抛面法对不同回火制度的30SiMnCrNiMoB钢的冲击断口表面的分维数进行了数量。通过研究发现:平行裂纹扩展方向的分维更适合于描述材料韧性的变化。  相似文献   

12.
含硫胶结充填体随着养护龄期的延长会出现膨胀开裂现象,存在明显裂隙的充填体试件再进行单轴抗压强度测试其结果十分离散,已不能有效地获得充填体力学参数.在室内进行配比试验,采用数字图像处理技术对得到的充填体表面裂隙图像进行二值化、去噪等预处理,而后计算其分形维数并分析其演化规律,且将分形维数与单轴抗压强度关联分析.研究结果表明:充填体试件面表的裂隙存在自相似性,表面裂隙越发育,其分形维数越大;分形维数与单轴抗压强度存在负相关关系,分形维数越小,其单轴抗压强度越高;分形维数可判别含硫充填体试件的完整性,当充填体表面裂隙的分形维数小于某阈值时,强度试验的结果更为可靠.  相似文献   

13.
综述了近十余年来金属断裂表面分形维数与金属力学性能之间关系的研究成果和研究进展。主要包括金属断面分维与金属的冲击韧度、断裂韧度、拉伸性能之间关系的具体进展。  相似文献   

14.
PDMDAAC-PFS复合絮凝剂处理硅藻土悬浊液的絮体分形特征   总被引:1,自引:0,他引:1  
采用扫描电镜考察了聚二甲基二烯丙基氯化铵-聚合硫酸铁复合絮凝剂(PDMDAAC-PFS)处理硅藻土悬浊液的絮体形貌,并与单独使用PDMDAAC和PFS产生的絮体进行比较.运用密度-密度相关函数计算了絮体的分维,探讨了絮体的结构、分维与沉降速度的关系.结果表明,使用PDMDAAC-PFS产生的硅藻土絮体分维为1.89,比单独使用PFS和PDMDAAC产生的絮体分维大(分维分别为1.67和1.55),其沉降速度比使用PFS产生的絮体快;絮体结构为内部有较多内孔的网状结构,内孔的可渗透性可降低沉降阻力,提高沉降速度.图5,参9.  相似文献   

15.
在砂浆锚固体腐蚀物理实验过程中所获得扫描电子显微镜(SEM)图像的基础上,通过图像处理技术提取了砂浆锚固体微观形貌特征,利用分形理论对形貌特征进行了定量描述,并建立了分形维数和砂浆锚固体的宏观粘结强度之间的关系,最后进行压汞试验,并与SEM图像处理的结果作对比分析。结果表明:随着腐蚀时间的增加,受力工况和未受力工况下锚固体的孔隙率均成线性增大,孔隙数量逐渐减少,孔隙的分形维数逐渐降低,分形维数和孔隙率成负线性关系;随着分形维数的减小,砂浆锚固体的粘结强度先增大后减小。压汞试验的测试结果与图像处理的结果对比,发现误差在5%~7%范围内。  相似文献   

16.
分形在砂状氧化铝强度研究中的应用   总被引:2,自引:2,他引:0  
应用分形理论研究了砂状氧化铝表面形貌和强度的关系. 采用扫描电镜分析了一系列种分、碳分氧化铝颗粒的形貌特征, 进行了分维数的计算和磨损指数的测定. 研究结果表明, 碳分氧化铝的磨损指数随分维数增大而增大;种分氧化铝磨损指数和分维数之间的关系必须结合形貌结构进行分析, 形貌结构类型相同的种分氧化铝的磨损指数随分维数增大而增大.  相似文献   

17.
用分形几何描述催化剂的表面形貌,用盒子维模型测定了不同制备方法和载体所制备的催化剂表面分形维数,分形维数D被看作是催化剂形貌的表征参数。结果表明:催化剂表面形态具有自相似性,催化剂表面分形维数介于2.57至2.67之间,尖晶石载体对催化剂表面分形维数影响最大,制备方法也影响催化剂表面分形维数,相同组成的催化剂表面分形维数增大,催化剂的CO转化率提高。  相似文献   

18.
分形几何是根据事物局部形态与整体形态间的自相似关系,针对无特征尺寸的不规则图形而提出的几何问题研究理论。运用分形几何理论对辽河特细砂混凝土骨料进行研究,得出了辽河特细砂质量分布与分形维数的关系;同时得到了特细砂骨料级配孔隙率与体积分形之间的联系,求出了特细砂体积分形维数。确定了分形维数跟颗粒粒径大小之间的关系,抗压强度与分形维数的关系,从理论上得出特细砂混凝土抗压强度要小于普通砂混凝土。又与试验相结合,得出不同配合比配制的不同强度等级的特细砂混凝土,其骨料级配分形维数是不同的。  相似文献   

19.
滑带土与滑坡的发展、稳定性评价有着密切的关系,以福建永泰旗山滑坡为例,取代表性滑带土样和表层土样进行颗粒级配试验,基于分形理论研究了颗粒分形特征,结合压力板仪测定土样土水特征曲线,对滑带土和表层土进行了评价,并以颗粒分形维数预测了土水特征曲线,研究结果表明,滑带土细粒土含量较表层土含量高,滑坡土存在很好的分形特征,颗粒分形维数越大,细粒土含量越高,土体的持水性能也较好。以颗粒粒径分形维数代替土水特征分形维数,并结合Books-Corey模型来预测土水特征曲线,得到实测值与预测值呈现较好的一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号