首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
化肥厂高浓度氨氮废水的处理和回用   总被引:10,自引:0,他引:10  
在实验室规模研究了通过生成鸟粪石(磷酸铵镁, MAP)去除氨氮工艺条件的影响. 加入磷酸和MgO产生MAP沉淀, pH值对其影响很大, pH值为9.0时氨氮去除效果最好. PO43-, Mg2+, NH4+的摩尔比为1 ∶1.5 ∶1时, 氨氮去除率较大并且可较好地回收氨生成鸟粪石. 此外, 物料的加入次序严重影响氨氮的去除. 两步沉淀工艺氨氮去除率达99.1%, 氨回收率为80.1%.  相似文献   

2.
化学沉淀法从氨氮废水中回收磷酸铵镁   总被引:1,自引:0,他引:1  
在模拟氨氮废水中进行磷酸铵镁(MAP)沉淀实验,研究回收MAP的适宜条件. 结果表明:在pH值8.0~11.0之间时生成的沉淀主要成分为MAP;当pH值为10.0,离子配比n(NH 4):n(Mg2 ):n(PO3-4)控制在1:1.4:1时得到的晶体纯度较高,沉淀量可达3.14 g·L-1,此时氨氮去除率为91.5%. 分析表明回收MAP可以大幅度降低化学沉淀法的成本,有利于该方法的实际应用.  相似文献   

3.
MAP法去除焦化废水氨氮   总被引:12,自引:0,他引:12  
介绍了焦化废水中氨氮的组成和MAP法去除焦化废水氨氮的原理。研究了pH值、反应温度、反应时间、沉淀时间和r(Mg2 )∶r(NH4 )∶r(PO43-)对氨氮脱除效果的影响。结果表明,在pH为9.5、水温为25℃、反应时间为20min、沉淀时间为15min、r(Mg2 )∶(rNH4 )∶(rPO43-)为1∶1∶1时对焦化废水中的氨氮有较好的去除效果。  相似文献   

4.
绿色低碳的氯氧镁水泥(MOC)在淤泥固化中具有较好的应用前景.目前,MOC固化淤泥领域对于MOC净浆中认为的较优水氯比区间(n(H2O)/n(MgCl2)=12~21)研究较少,相关反应机理尚不明确.选取5组满足该区间的水氯比(n(H2O)/n(MgCl2)=16,17,18,19,20),通过无侧限抗压强度(UCS)、酸碱度(pH)、扫描电镜(SEM)和X射线衍射(XRD)等试验,研究了水氯比、MgO掺量以及养护龄期对MOC固化淤泥力学性能以及微观机理的影响.结果表明:MOC固化淤泥的最优水氯比为17;MOC固化淤泥早强显著,但14 d后无侧限抗压强度会有所下降;相同水氯比下,MgO掺量越高,生成的产物越多,无侧限抗压强度越大,pH也越高;MOC固化淤泥的产物以三相(3Mg(OH)2·MgCl2·8H2O)为主,并含有少量五相产物(5Mg(OH)2·MgCl2·8H2...  相似文献   

5.
联合沉淀法处理氮磷废水的试验研究   总被引:1,自引:0,他引:1  
黄新毅 《科技信息》2010,(21):J0014-J0015
本文在富含氮磷的废水中,通过MAP法与HAP法联合的方式对废水进行处理。分别考察了pH值和钙镁源添加量对MAP法和HAP法处理试验废水时对磷回收率的影响.并研究了MAP和HAP联合处理废水的效果以及处理后回收的沉淀物中磷的缓释性。结果表明:MAP法最佳的反应条件为pH值为10.5,N:P:Mg为1:1:1.2;HAP法的最佳反应条件为pH值为9.5,P:Ca为1:1.6;MAP—HAP法相对于单纯使用MAP法和HAP法,磷回收率分别提高了15.03%和12.16%,且MAP—HAP法的回收率高于HAP—MAP法;在MAP—HAP法处理后得到的沉淀产物在前3次浸提中磷的释放量逐渐降低,证明其作为磷肥使用具有一定的缓释性能。  相似文献   

6.
化学沉淀法处理高氨氮模拟废水的研究   总被引:1,自引:0,他引:1  
利用沉淀剂Mg Cl2和Na2HPO4,以磷酸铵镁的形式去除高浓度氨氮模拟废水中的NH4+,考察了p H值、Mg∶N摩尔比对氨氮和无机磷去除率的影响,并对产物进行了电镜扫描(SEM)、傅里叶变换红外光谱(FTIR)表征。结果表明:当p H值为9.0~9.2,n(Mg2+):n(NH4+):n(PO43-)摩尔比为1.1∶1∶1时,氨氮去除率和无机磷去除率可分别达到96.64%和95.55%,产物为斜方形结构的磷酸铵镁沉淀。可见,化学沉淀法能够满足氨氮高去除率的要求,方便后续进一步的生化处理,同时,沉淀产物可用作氮肥,降低废水的处理成本。  相似文献   

7.
电解锰生产中镁的回收利用   总被引:1,自引:0,他引:1  
采用沉淀分离法将镁离子沉淀为MgF2,继而利用浓硫酸和氨水将其转化为Mg(OH)2 或MgO, 再加以回收,回收率高达87. 7%.  相似文献   

8.
采用鸟粪石沉淀(MAP)法同时回收某酒厂厌氧工艺出水中的氮和磷,以MgO取代MgCl_2作为沉淀剂,研究了不同pH值、镁磷摩尔比和反应时间对N、P回收率的影响.结果表明:在pH=9.6,n(Mg~(2+))︰n(P)=1︰1,反应时间为20 min的最佳回收工艺条件下,总磷和氨氮的回收率分别高达98.0%和30.9%,同样条件下氨氮的挥发率为7.2%.生成的鸟粪石沉淀物的SEM分析结果显示:其结晶体为斜方型晶体,表面有絮状物和微粒附着;XRD半定量分析表明:沉淀物中鸟粪石的含量高达94%,属于利用价值极高的缓释化肥.每1000 m3的酒厂厌氧出水通过投加0.16 t的氧化镁和微量的氢氧化钠可以回收1.01 t的高纯度(90%)鸟粪石,具有极高的经济价值.  相似文献   

9.
应用磷酸铵镁化学沉淀方法降低生活垃圾渗滤液氨氮含量。研究结果表明:pH值在10时,氨氮去除率最佳,可达到98.3%。适宜的反应时间为15 min,氨氮去除率达87.0%。沉淀剂配比以1∶1∶1,1∶1∶1.2和1.2∶1∶1为宜,氨氮去除率大于98.0%。基于正交试验确定经济合理的工艺条件为:反应时间15 min,pH=10,n(Mg)∶n(N)∶n(P)=1∶1∶1。此条件下,进水TP 2.7 mg/L,出水TP15.0 mg/L,C∶N∶P接近100∶5∶1,合理添加了磷元素,符合后续生化处理的要求。  相似文献   

10.
以农业副产物稻壳为硅源、 硫酸铝为铝源, 通过炭化、 碱溶和水热合成工艺, 无需老化过程及添加晶种制备了洗涤助剂P型分子筛, 并考察了硅铝比、 碱度比、 反应时间和反应温度对合成分子筛的影响. 实验结果表明, 分子筛合成的最佳条件为: n(Na2O) ∶n(SiO2)=1.43, n(SiO2) ∶n(Al2O3)=4,  n(H2O) ∶n(Na2O)=18.3, 在85 ℃反应8 h. 产品的XRD和SEM表征表明, 上述条件下合成的P型分子筛产品具有较高的结晶度, 无杂相且晶粒细小, 其Ca2+交换容量可达330 mg/g.  相似文献   

11.
化学沉淀法去除木薯制备酒精废水中氨氮的试验研究   总被引:1,自引:0,他引:1  
针对NH_3-N质量浓度为500~900mg/L木薯制备酒精的废水,采用正交试验及单因素试验研究了用化学沉淀法去除废水中氨氮的工艺条件,结果表明:以MgCl_2·6H_2O和Na2HPO4·12H_2O为沉淀剂,在pH=9.0时废水溶液中PO_4~(3-)与Mg~(2+)和NH_4~+一起发生沉淀反应生成MgNH4PO4·6H_2O,从而达到去除废水中的氨氮的目的;影响废水中的氨氮去除率的因素依次为n(Mg~(2+):NH_4~+),反应时间,n(PO_4~(3-)∶NH_4~+)和pH值。最佳反应条件是当pH=9.0,n(Mg~(2+))∶n(NH_4~+)∶n(PO_4~(3-))=1.4∶1.0∶1.2,常温下反应30min,静置30min,该工艺条件下,对初始氨氮为644.5mg/L的木薯制备酒精的废水进行处理,其氨氮的去除率90%。  相似文献   

12.
碳源对地下渗滤系统脱氮及产生N2O的影响   总被引:1,自引:0,他引:1  
生活污水经沉淀预处理后投配到地下污水渗滤系统(SWIS)中进行深度脱氮处理.考察了在SWIS基质中添加有机碳源对脱氮效果、脱氮微生物活性及N2O产生量和转化率的影响.研究结果表明:碳源的添加有利于促进微生物的反硝化作用,但过量添加会促进其他菌群的生长而抑制脱氮菌群的优势活性,从而削弱系统的脱氮能力.当有机质质量分数由2.0%提高到9.5%时,SWIS对污水中COD、氨氮及总氮平均去除率分别降低了10.9%,19.5%和24%;N2O产率和转化率均随着碳源添加量的增加而下降.相关分析表明,硝化细菌、反硝化细菌数量对数值分别与N2O转化率呈显著正、负相关关系(R2分别为0.994及0.959),说明SWIS中微生物硝化-反硝化作用尤其上层硝化反应是N2O产生的主要途径.  相似文献   

13.
鸟粪石沉淀法用于养猪场污水前处理的影响因素研究   总被引:1,自引:0,他引:1  
用鸟粪石沉淀法对养猪场污水进行前处理,研究了各类因素对沉淀效果的影响,包括加药剂与调节pH值的顺序、搅拌速率、温度、反应时间、溶液pH值与加入的药剂量等,其中溶液pH值与加入的药剂量是养猪场污水中污染物去除的决定性影响因素.本实验条件下,P/Mg/N比为1/1/1.2、pH10.0时,有最佳NH4+-N的去除率与最低PO43-P的残留浓度,分别是87%和30.21mg/L.  相似文献   

14.
研究Fenton高级氧化技术对水中抗生素盐酸左氧氟沙星的去除效果, 并考察n(H2O2)∶n(Fe2+)、 H2O2投加量、 溶液初始pH值、 反应时间和初始质量浓度对去除效果的影响. 结果表明: 当n(H2O2)∶n(Fe2+)=5~25时, 盐酸左氧氟沙星、 化学需氧量(K2Cr2O7法, CODCr)和总有机碳(TOC)的去除率随二者物质的量比的增加先增加后降低; 当H2O2投加量为15 mL/L时, 盐酸左氧氟沙星、 CODCr和TOC去除率分别为88.40%,5952%,3380%; 当pH=3时, 盐酸左氧氟沙星、 CODCr和TOC的去除率分别为9240%,5952%,3451%; 盐酸左氧氟沙星、 CODCr和TOC的去除率随反应时间呈逐渐增加的趋势, 去除率随初始质量浓度的升高而下降; 当反应时间为3 h时, 去除过程基本完成. 在pH=3, 温度为20 ℃, H2O2投加量为15 mL/L, n(H2O2)∶n(Fe2+)=10的条件下, Fenton高级氧化技术对水中盐酸左氧氟沙星的去除效果最好, 达9640%.  相似文献   

15.
在旋转填充床(RPB)中进行了O3/FeSO4·7H2O(用Fe(Ⅱ)表示)和O3/Fenton两种高级氧化工艺处理模拟聚乙烯醇(PVA)废水的研究,考察了Fe2+浓度、初始pH、RPB转速、反应温度以及气相O3浓度对PVA降解率的影响,结果表明O3/Fenton工艺比O3/Fe(Ⅱ)工艺表现出更好的PVA降解性能。在O3/Fenton工艺中,在初始PVA浓度200 mg/L、pH=2、反应温度25 ℃、RPB转速1 000 r/min、O3浓度30 mg/L、气体流量90 L/h、液体流量30 L/h、Fe2+浓度0.8 mmol/L、H2O2浓度35 mg/L的条件下,PVA的降解率可以达到99.4%。此外,还对O3/Fe(Ⅱ)和O3/Fenton工艺降解PVA的反应动力学进行了研究,发现这两种工艺中PVA降解反应均为一级反应。  相似文献   

16.
基于两个化学反应(1)CO2+H2O→H2CO3和(2)H2CO3+3H2O→H2CO3·3H2O,采用量子化学方法,优化获得反应物和产物分子结构,计算其红外振动光谱和化学反应的热力学数据,确定这些化合物对红外辐射的吸收与强度.研究发现,反应(1)和(2)能自发发生反应,产生H2CO3和H2CO3·3H2O(三水碳酸);H2CO3具有较强的红外辐射吸收(重要的吸收频率1 919.9 cm-1和强度426.7 km/mol等),H2CO3·3H2O具有很强的红外辐射吸收(重要的吸收频率3 145.9 cm-1和强...  相似文献   

17.
全水清  吴银枝 《江西科学》2008,26(5):794-796
采用Na2HPO4·12H2O和MgSO4·7H2O使NH3-N生成磷酸铵镁的化学沉淀法,考察了药剂投加顺序、pH值、药剂配比对高浓度氨氮废水处理效果的影响。结果表明:药剂投加顺序对处理效果没有明显影响;在pH值为9,反应时间为20min,n(NH^+4 +):n(Mg^2+):n(PO^3-4)=1:1.02:1时,氨氮去除率可迭99.28%,为后续处理创造了条件。  相似文献   

18.
文章研究了磷酸铵镁法沉淀模拟高浓度氨氮废水中氨氮的条件,添加助凝剂对氨氮去除的辅助效果.实验得到最佳沉淀条件为:沉淀剂为Na2HPO4与MgCl2,投加摩尔比Mg:N:P=1:1:1,pH为9.50,反应时间10 min,反应温度25℃.在此条件下,氨氮去除率可达86.71%.在优化条件的基础上,投加助凝剂FeSO4· xH2O,Al2(SO4)3·xH2O及活性炭,最佳投加量均为0.5 g,可使氨氮去除率提高至89%以上,其中活性炭助凝效果最好,氨氮去除率提高2.83%.将助凝剂辅助磷酸铵镁法用于味精废水氨氮处理也取得了良好效果.  相似文献   

19.
用密度泛函理论(DFT)中的B3LYP方法, 在6-311+G(2df)基组水平上优化气相条件下甲硫氨酸(Met)分子的几何构型, 并在PBE0/def2-TZVPP下, 用含时密度泛函理论(TDDFT)方法计算得到隐式溶剂甲醇下Met与H2O分子以1∶1和1∶2混合体系手性转换反应物的分子轨道(MO)特征及空穴-电子分布等值面图, 并用图解对比分析电子激发特性. 结果表明: 三者定性分析结果基本一致, 其中S-Met-CH3OH与S-Met-CH3OH+1H2O和S-Met-CH3OH+2H2O的激发态S9定性结果不一致, S-Met-CH3OH+2H2O与S-Met-CH3OH+1H2O的激发态S7定性结果不一致; 水链对S-Met-CH3OH分子体系的电子激发特性有一定影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号