首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Dabie-Sulu UHP rocks belt: review and prospect   总被引:13,自引:0,他引:13  
The new results in the studies of the Dabie-Sulu UHP rocks belt during the past 5 years were summarized and discussed. The discussion included the following key points: ( i ) UHP eclogite has two kinds of country rocks, with one being UHP eclogite facies rocks and the other non-UHP granitic gneiss. ( ii ) The FeTiO3 in olivine indicated exsolution at depth of 300–400 km. However, the key point is to prove the peridotite in which the FeTlO3 in olivine was found once had been subducted down that depth. ( iii ) UHP hydrous phase evidenced that fluids had taken part in the UHP metamorphism, while the meter-scale inhomogeneous distribution of O-, C-isotope indicated no fluid activity in the deep subduction environment. ( IV ) No agreement has been arrived on many problems related to the tectonic background of the UHP rocks, such as “whether or not ophiolitic rocks there exist now?”, “when did UHP metamorphism proceed?”, “what is the subdution polarity?”, etc. ( V ) How did the UHP rocks exhume from mantle depth? The future studies will focus on the following three subjects: ( i ) thermal dynamics of the UHP metamorphism, ( ii ) relationship between UHP metamorphism and collision orogeny, as well as their geodynamics, and ( iii ) interactions between crust and mantle, and between continental lithosphere and asthenosphere during the collision orogenic process, as well as their constraints to the evolution of continental lithosphere.  相似文献   

2.
The geological characteristics of ultrahigh-pressure (UHP) metamorphic belts formed by deep subduction of oceanic crust are summarized in this paper. Oceanic-type UHP metamorphic belt is characterized by its protolithlc assemblage of typical oceanic crust, the peak metamorphic temperature 〈600℃, P-T path undergoing blueschist facies during prograde and retrograde metamorphic evolution, reepectively, with low geothermal gradient of cold subduction. The further study of oceanic-type UHP metamorphic belt is very significant for constructing metamorphic reaction series of cold subduction zone, for understanding how aqueous fluids were transported into deep mantle and for classifying the types of UHP metamorphism in cold subduction zone. The uplift and exhumation mechanism of oceanic UHP metamorphic rocks is one of the most challenging problems in the study of UHP metamorphism, which is very important for understanding the geodynamic mechanism of solid Earth. As a traveler eubducted into the mantle depth end then uplifted to the surface, oceanic-type UHP metamorphic belts witness the bulk process from the subduction to exhumation and is an ideal target to study the geochemical behavior end cycling of elements in subduction zones. The tectonic evolution of one convergent orogenic belt can be usually divided into two stages of oceanic subduction and followed continental subduction and collision, and the two best-established examples of orogenic belts are Alpa and Himalaya. Therefore, the study of oceanic-type UHP metamorphic belt is the frontier of the current plate tectonic theory. As two case studies, the current status and existing problems of oceanic-type UHP metamorphic belts in Southwest Tianshan and North Qaidam, NW China, are reviewed in this paper.  相似文献   

3.
Recent progress in the study of the UHP metamorphic belt in southwestern Tianshan, China, is summarized in this paper. This about 80-kin-long and over 10-km-wide UHP belt has been recognized by the discovery of coesite, coesite pseudomorphs and other UHP minerals. It is the largest oceanic-type UHP metamorphic belt reported so far. It has formed due to northward subduc- tion of the Tianshan Paleo-Ocean. U-Pb dating of metamorphic rims of zircons from a coesite-bearing garnet-phengite schist yields a peak UHP metamorphic ages of 320±3.7 Ma. Combined with ages of 233-226 Ma obtained from rims of zircons from retrograded eclogites, a long retrograde metamorphic evolution (〉70 Ma) has been revealed. According to phase equilibria mod- eling, the P-T paths of both coesite-bearing eclogites and garnet-phengite schists are characterized by thermal relaxation, i.e., the metamorphic temperature peak lags behind the pressure peak, indicating that the UHP rocks experienced slow and long heating and decompression during exhumation in the subduction channel. On the basis of the field observation that a small amount of eclogite lenses is wrapped in large volumes of metapelites, and the similar P-T paths of both rock types, we propose that the ex- humation of the UHP eclogites from southwestern Tianshan, China, may have resulted from the exhumation of large volumes of low-density metapelites, which carried the denser eclogites to the Earth's surface.  相似文献   

4.
Fluidinclusionstudiesarepowerfultoolsfordeci-pheringthefluidevolutionandfluid-rockinteractionin-volvingultrahigh-pressure(UHP)metamorphismofcrustalrocksatmantledepths.Thecompositionandprop-ertiesoffluidinclusionscanreflectthephysico-chemicalconditionsofthefluidsduringplatesubduction,UHPmetamorphismandexhumation.However,UHPmeta-morphicrockscommonlyexperiencedconsiderablede-compressionrelatedtotherapidexhumationprocess.Thishascausedtheinternalpressureoftheinclusionstrappedinthemetamorphicmin…  相似文献   

5.
Unusual polyphase inclusions of K-feldspar+quartz+titanite+solid salt and K-feldspar+albite+quartz+epidote with textures similar to the other K-feldspar+quartz inclusions were found in omphacite grains from the Sulu ultrahigh pressure (UHP) eclogites. One of these inclusions contain square to round solid salt inclusions of KCl-NaCl composition. Such a mineral assemblage within K-feldspar-bearing inclusions hosted by UHP metamorphic phases suggests that (1) potassium granitic melts enriched in Cl components were presented during UHP metamorphism or at the early stage of rapid exhumation of deeply subducted continental slab; (2) they were resulted from reactions between the incoming granitic melts and quartz (or coesite); and (3) solid salt inclusions of NaCl-KCl were derived from dehydration and desiccation of Cl-bearing melts. Our new observations further demonstrate that during the tectonic evolution of UHP rocks, fertile components within deeply subducted continental materials could undergo partial melting, leading to the formation of Cl-bearing potassium granitic melts and substantial migration of fluid-conservative elements (e.g. Ti, Hf) within the UHP slab.  相似文献   

6.
Although tectonic models were presented for exhumation of ultrahigh-pressure (UHP) metamorphic rocks during the continental collision, there is increasing evidence for the decoupling between crustal slices at various depths within deeply subducted continental crust. This lends support to the multi-slice successive exhumation model of the UHP metamorphic rocks in the Dabie-Sulu orogen. The available evidence is summarized as follows: (1) the low-grade metamorphic slices, which have geotectonic affinity to the South China Block and part of them records the Triassic metamorphism, occur in the northern margin of the Dabie-Sulu UHP metamorphic zone, suggesting decoupling of the upper crust from the underlying basement during the initial stages of continental subduction; (2) the Dabie and Sulu HP to UHP metamorphic zones comprise several HP to UHP slices, which have an increased trend of metamorphic grade from south to north but a decreased trend of peak metamorphic ages correspondingly; and (3) the Chinese Continental Science Drilling (CCSD) project at Donghai in the Sulu orogen reveals that the UHP metamorphic zone is composed of several stacked slices, which display distinctive high and low radiogenic Pb from upper to lower parts in the profile, suggesting that these UHP crustal slices were derived from the subducted upper and middle crusts, respectively. Detachment surfaces within the deeply subducted crust may occur either along an ancient fault as a channel of fluid flow, which resulted in weakening of mechanic strength of the rocks adjacent to the fault due to fluid-rock interaction, or along the low-viscosity zones which resulted from variations of geotherms and lithospheric compositions at different depths. The multi-slice successive exhumation model is different from the traditional exhumation model of the UHP metamorphic rocks in that the latter assumes the detachment of the entire subducted continental crust from the underlying mantle lithosphere and its subsequent exhumation as a whol  相似文献   

7.
Some new ideas about the deep subduction of continental crust   总被引:1,自引:0,他引:1  
The discovery of coesite in metasedimentary rocks not only implies that the materials of continental crust with low density could subduct down to mantle depth, but also initiates a series of studies on continent-deep-sub-duction. Could continental crust be subducted down to the depth of more than 300 km? Water played a role in ultra-high-pressure (UHP) metamorphism although limited. Was the fluid really limited within meter-scale, as the authors suggested, at mantle depth? Erosion and extension could remove the overburden of the UHP rocks, while squeezing and buoyancy could lift up the UHP rocks through the overburden. What, however, is the main process and mechanism with which the UHP rocks have exhumed from mantle depth? All progress of these studies will eventually form and complete a new paradigm of geodynamics.  相似文献   

8.
The Yematan batholith crops out over 120 km^2 in the North Qaidam ultrahigh pressure (UHP) metamorphic belt. It consists of granodiorite, monzogranite and biotite granite and forms an irregular intrusion into Neoproterozoic gneiss that has undergone Caledonian UHP metamorphism. Zircons from the Yematan granodiorite yield a SHRIMP U-Pb age of 397 3 Ma. These granitic rocks have geochemical characteristics intermediate between I- and S-type granites, and are post-collisional. We suggest that the Yematan granitic rocks were formed during the last exhumation event of the North Qaidam UHP belt.  相似文献   

9.
Evidence for UHP metamorphism of eclogites from the Altun Mountains   总被引:9,自引:0,他引:9  
Ultrahigh pressure (UHP) metamorphism refers to metamorphism that has occurred at pressures for the stability of coesite. The polycrystalline quartz inclusions showing the characteristic texture within garnets of eclogites indicates the pre-existence of coesites under the peak metamorphic condition. The unusual exsolution textures in ompacites and apatites, and the pressure estimations of phengite-bearing eciogites have been taken to provide further proof of eclogite formation under the UHP conditions.Combined with the fact that coesites have been observed in country rocks of eclogites in North Qaidam Mountains, another UHP metamorphic belt cut by the large-scale strikeslip fault in the AItun-North Qaidam area of China is confirmed.``  相似文献   

10.
Abundantbasic-ultrabasicbodiescropoutintheDabie-Suluultrahighpressure(UHP)metamorphicbeltandoccurasgroupandband.Muchresearchworkhasbeencarriedoutonthebasic-ultrabasicbodiesandmadeagreatprogressespeciallyonmineralogy.ThediscoveryofmineralassemblagesofUHPmetamorphismandexsolvedlamellaesuggestthattherocksmaycomefromthedeepmantleorwasonceemplacedintotheshallowlevelofthecrustandthensubductedtothemantledepthsduringsub-ductionofthecrust[1—13].However,theiroriginandtec-tonicsettingarestillacontrov…  相似文献   

11.
U-Pb zircon dating on two foliated garnet-bearing granite samples in the western Dabie ultra-high-pressure (UHP) metamorphic unit yields concordant ages of (234±4) Ma and (227±5) Ma, respectively. These ages, following the UHP peak metamorphism, represent the magma emplacement ages for the foliated garnet-bearing granites. This, for the first time, shows that there are the Triassic granites in the Dabie Mountains. The foliated garnet-bearing granites resemble A-type granite in geochemical characteristics, indicating that they were formed in extensional geodynamic setting. The magma formation reflects a reheating event in the Dabie orogenic belt and it enhances the transfer of tectonic regime from collision into extension and promotes the rapid exhumation into lower crust for the UHP metamorphic rocks.  相似文献   

12.
Some geologists reported their discovery of sandwiched low-grade metamorphic slabs within UHP metamorphic Complexes in Changpu, Yuexi County, Anhui Province. They also suggested that some coesite-bearing eclogites are igneous veins, which intruded low-grade metamorphic slabs and other related rocks. Moreover they further called in question to UHP metamorphic process and continental collision tectonism in the Dabieshan terrane. Based on our recent study, so-called low-grade metamorphic slabs are strongly deformed fabric, fine-grained and tectonic recrystallized mylonites and tectonites. Their protolith rocks are garnet-bearing orthogneiss, eclogite and marble, as well as a few amounts of strongly deformed acid and basic veins. Their metamorphic, geochemical and geochronological characteristics are also identical with UHPM rocks and regional country orthogneisses. Therefore we conclude that there are not low-grade metamorphic slabs sand wiched with UHP metamorphic rocks in the Dabieshan terrane.  相似文献   

13.
The Ar-Ar dating of phengite and omphacite in ultrahigh-pressure (UHP) eclogite of Bixiling and Hengchong in the South Dabie Terrain shows that the content range of excess argon is as high as (0.4-1.3)×10-8 mol.>g-1. The genesis of the excess argon is discussed. The Ar-Ar age spectra of omphacite could not support the opinion that the UHP metamorphism occurred in Caledon epoch and pre-Caledon epoch.  相似文献   

14.
Garnets in ultrahigh pressure (UHP) eclogites from Bixiling in Dabieshan were investigated by Fourier transform infrared spectrometer (FTIR). The results demonstrate that all garnets contain structural water which occurs as hydroxyl (OH), with contents ranging from 164 to 2034 ppm (H2O wt.) and mostly higher than 500 ppm. Like omphacite which is another major OH-rich mineral in eclogites, garnet is an important carrier that can recycle the surface water into deep mantles. Heterogeneity of water in garnets exists not only among different samples of the same outcrop (~150 m), but also among different crystals of the same sample (~1 cm). This indicates that the mobility of fluids during UHP metamorphism is very limited (possibly on centimeter scales), and that both subduction and exhumation processes of UHP rocks are very fast.  相似文献   

15.
The possible subduction of continental material to depths greater than 200 km   总被引:102,自引:0,他引:102  
Ye K  Cong B  Ye D 《Nature》2000,407(6805):734-736
Determining the depth to which continental lithosphere can be subducted into the mantle at convergent plate boundaries is of importance for understanding the long-term growth of supercontinents as well as the dynamic processes that shape such margins. Recent discoveries of coesite and diamond in regional ultrahigh-pressure (UHP) metamorphic rocks has demonstrated that continental material can be subducted to depths of at least 120 km (ref. 1), and subduction to depths of 150-300 km has been inferred from garnet peridotites in orogenic UHP belts based on several indirect observations. But continental subduction to such depths is difficult to trace directly in natural UHP metamorphic crustal rocks by conventional mineralogical and petrological methods because of extensive late-stage recrystallization and the lack of a suitable pressure indicator. It has been predicted from experimental work, however, that solid-state dissolution of pyroxene should occur in garnet at depths greater than 150 km (refs 6-8). Here we report the observation of high concentrations of clinopyroxene, rutile and apatite exsolutions in garnet within eclogites from Yangkou in the Sulu UHP metamorphic belt, China. We interpret these data as resulting from the high-pressure formation of pyroxene solid solutions in subducted continental material. Appropriate conditions for the Na2O concentrations and octahedral silicon observed in these samples are met at depths greater than 200 km.  相似文献   

16.
Coesite inclusions, together with omphacite, jadeite, garnet and phengite inclusions, were identified in zircons separates from almost all gneissic core samples of pre-pilot drillhole CCSD-PP2 by the Laser Raman spectroscopy and the cathodoluminescence method. These data indicate that gneissic rocks consisting of paragneisses and orthogneisses ubiquitously experienced UHP metamorphism. This research may be of great significance for an in-depth study of the subduction-exhumation mechanism of the Sulu UHP metamorphic belt and selecting the drilling site for the Chinese Continental Scientific Drilling Project.  相似文献   

17.
以脱碳反应动力学规律及质量平衡为基础导出了电炉兑铁水条件下熔池脱碳速度与相应工艺参数之间关系的数学模型.与某钢厂100 t UHP电弧炉实际冶炼结果对比表明,该模型可以比较准确地预测熔池含碳量的变化和控制冶炼终点碳含量.研究表明,在高碳范围内脱碳速度与供氧流量成正比;在中碳范围内,其脱碳速度与熔池碳含量的平方根成正比;在低碳范围内脱碳速度与熔池碳含量成正比.用最小经济吹氧量曲线,即根据钢水碳含量降低相应递减吹氧量的吹氧方式,可以获得最佳的冶炼效果.  相似文献   

18.
. 《科学通报(英文版)》2000,45(15):1345-1351
The Ar-Ar dating of phengite and omphacite in ultrahigh-pressure (UHP) eclogite of Bixiling and Hengchong in the South Dabie Terrain shows that the content range of excess argon is as high as (0.4–1.3)×108 mol · g1. The genesis of the excess argon is discussed. The Ar-Ar age spectra of omphacite could not support the opinion that the UHP metamorphism occurred in Caledon epoch and pre-Caledon epoch.  相似文献   

19.
Mineralogical evidence for continental deep subduction   总被引:2,自引:0,他引:2  
Diamond is an index mineral to prove ultrahigh pressure (UHP) metamorphic conditions because it is only stable at the pressures above 3.3 GPa. Its occurrence in eclogite-facies metamorphic rocks suggests plate subduction to depths over 120 km assuming the normal gradient of lithostatic pressure. Because UHP eclogites are the metamorphic products of basaltic rocks, the occurrence of diamond in the eclogites demonstrates a complete geodynamic cycle in that mafic crustal rocks were subducted t…  相似文献   

20.
Greenschist-facies metasedimentary and metaigne- ous rocks are frequently found to occur continuously along convergent plate margins where high pressure (HP) or ultrahigh pressure (UHP) metamorphic rocks also crop out[1-7]. Geological investigations of co…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号