首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
碳纳米管负载/促进Cu-Cr催化剂上甲醇分解制氢   总被引:10,自引:0,他引:10  
用自行制备的碳纳米管(CNTs)作为载体,研制出一类高活性CNTs负载/促进甲醇分解制氢Cu Cr/CNTs催化剂.实验结果显示,在0.1MPa,503K,n(CH3OH) n(Ar)=2 1,GHSV=3600h-1的反应条件下,27%Cu10Cr1/CNTs催化剂上H2的时空产率达133mmol H2h-1(g catal.)-1,是AC、SiO2和γ Al2O3负载相应参比催化剂(分别为:111、73.5、60.9mmol H2h-1(g catal.)-1)的1.20、1.81和2.18倍.实验表征研究揭示,碳纳米管载体促使催化剂活性Cu表面积大为增加,并诱使Cu Cr催化活性位上甲醇分子解离下来的吸附H物种向碳纳米管载体"溢流"、疏散、随后偶联成H2(a)脱附,于是降低了副产物甲醛、甲酸甲酯的生成机率,有利于提高甲醇深度脱氢、生成H2和CO的选择性.  相似文献   

2.
用自行制备的多壁碳纳米管(CNTs)作为载体,制备一类负载型CNTs促进Co-Mo-K硫化物基催化剂,x%CoiMojKk/CNTs(x%为质量百分数).实验发现,在2.0 MPa、593 K、V(CO):V(H2):V(N2)=45:45:10、GHSV=2 400mLSTP.h-1.g-cat.-1的反应条件下,在11.6%Co1Mo1K0.6/CNTs催化剂上,所观测低碳醇合成的比反应速率达到0.77μmol-CO.s-1.(mmol-Mo)-1,是AC和-γAl2O3分别负载各自最佳Co-Mo-K摩尔组成及相应负载量催化剂(50.3%Co1Mo1K0.8/AC和26.1%Co1Mo1K0.8/γ-Al2O3)上这个值(分别为0.23和0.27μmol-CO.s-1.(mmol-Mo)-1)的3.35和2.85倍.对比研究显示,用CNTs代替常规载体AC和-γAl2O3并不引起所负载Co1Mo1K0.6硫化物催化剂上低碳醇合成反应的表观活化能发生明显变化.与AC或-γAl2O3负载的参比体系相比,CNTs负载的催化剂更易于在较低温度下还原活化,并促使工作态催化剂表面催化活性Mo物种(Mo4+)在总Mo量中所占份额明显提高;在另一方面,CNTs负载的催化剂展现出对H2更强的吸附活化能力,有助于在工作态催化剂表面营造较高稳态浓度吸附氢的表面氛围,于是提高了表面加氢反应的速率;这些因素对低碳醇合成反应活性的提高都有重要贡献.  相似文献   

3.
用一种金属Co修饰多壁碳纳米管基复合材料(y%Co/CNT)作为促进剂,制备一种高效新型的y%Co/CNT促进CuO-ZnO-ZrO2基催化剂(记为CuiZnjZrk-x%(y%Co/CNT)),考察其对CO2加氢制甲醇的催化性能.实验结果显示,在组成经优化的Cu8Zn2Zr5-10%(4.5%Co/CNT)催化剂上,5.0 MPa,523 K,V(H2)∶V(CO2)∶V(N2)=69∶23∶8,GHSV=25 000 mL/(h.g)的反应条件下,CO2加氢的转化频率达4.99×10-3s-1,分别是相同条件下非促进的原基质Cu8Zn2Zr5和单纯CNT促进的对应物Cu8Zn2Zr5-10%CNT上的相应值(4.31×10-3和4.64×10-3s-1)的1.16和1.08倍;催化剂的表征结果显示,金属Co修饰CNT促进的催化剂对H2优良的吸附活化性能对CO2加氢转化频率(TOF)的显著提高起主要作用.在CO2加氢产物中甲醇的C-基选择性达97.9%,单程时空产率为699 mg/(h.g),具有实用前景.  相似文献   

4.
在固定床高压微反装置上 ,系统研究了TiO2 改性的γ -Al2 O3 负载Cu催化剂的CO ,CO2 加氢反应 .活性评价结果表明 ,TiO2 的添加极大地促进了Cu/γ Al2 O3 催化剂的CO2 加氢合成甲醇反应的活性 ,但是对CO加氢合成二甲醚有抑制作用 ,这表明CO2 ,CO加氢之间有着本质的区别  相似文献   

5.
以合成气(CO/CO2/H2)为原料,Cu-Zn基为催化剂,2-丁醇为溶剂,低温低压(443 K,3.0 MPa)下合成甲醇.醇溶剂参与反应,但并不被消耗,起到了助催化作用.考察了载体、稀土助剂对催化剂活性的影响,结果表明ZnO,MgO,Al2O3,La2O3,Y2O3作为载体制得的催化剂中,Cu/ZnO在反应中呈现了最高的反应活性;稀土元素作为助剂,能提高Cu-Zn基催化剂的活性,Y的质量分数为7.5%的Cu/ZnO/Y2O3和La的质量分数为10%的Cu/ZnO/La2O3催化剂在反应中均呈现出最高的反应活性,碳的总转化率比使用Cu/ZnO催化剂分别提高了10%和17.5%,两者甲醇的产率...  相似文献   

6.
TiO2改性的γ—Al2O3负载Cu催化上CO2加氢合成甲醇的研究   总被引:1,自引:0,他引:1  
在固定床高压微反装置上,系统研究了TiO2改性的γ-Al2O3负载Cu催化剂的CO,CO2加氢反应,活性评价结果表明,TiO2的添加极大地促进了Cu/γ-Al2O3催化剂的CO2加氢合成甲醇反应的活性,但是对CO加氢合成二甲醚有抑制作用,这表明CO2,CO加氢之间有着本质的区别。  相似文献   

7.
CO2加氢被认为是目前固定大量排放CO2的最好方法之一.研发出一种碳纳米管(CNT)促进的Cu-ZrO2-HZSM-5沸石分子筛双功能混合型催化剂,将其用于CO2加氢合成甲醇和甲醇脱水生成二甲醚(DME)二步串联催化一器化,实现由(CO2+H2)直接合成DME.在5.0 MPa,523 K,V(H2)∶V(CO2)∶V(N2)=69∶23∶8,空速(GHSV)=25 000mL/(h.g)的反应条件下,在所研发(Cu2Zr3-10%CNT)-30%HZSM-5催化剂上,CO2加氢的转化率达9.44%,比相应单功能加氢催化剂(Cu2Zr3-10%CNT)的相应值(7.00%)提高35%.CNT能作为Cu-ZrO2-HZSM-5双功能混合型催化剂的促进剂.在上述反应条件下,含CNT的催化剂的DME时空产率达438mg/(h.g),比不含CNT的原双功能混合型基质催化剂的相应值(395mg/(h.g))提高11%.结果证实,利用双功能混合型催化剂,将CO2加氢合成甲醇和甲醇脱水生成DME两个过程串联催化一器化,能大幅度提高CO2加氢转化的效率.  相似文献   

8.
Co修饰碳纳米管促进的Cu-ZrO2催化剂上CO2加氢制甲醇   总被引:3,自引:1,他引:2  
利用微波助多元醇化学还原沉积法,制备一类Co修饰的多壁碳纳米管(CNT)基复合材料(y%Co/CNT),进而用其作为添加剂,制备共沉淀型y%Co/CNT促进的Cu-ZrO2催化剂,CuiZrj-x%(y%Co/CNT).Co对CNT的修饰明显地提高了该催化剂对CO2加氢制甲醇的催化活性.在Cu1Zr1-10%(4.3%Co/CNT)催化剂上,5.0 MPa,513 K,V(H2)/V(CO2)/V(N2)=69/23/8,GHSV=8 000 mL/(h·g)的反应条件下,CO2加氢的转化频率(TOF,即单位时间(s)内在单个表面活性金属Cu0位上CO2加氢转化的分子数)达2.89×10-3s-1,是相同条件下非促进的原基质Cu1Zr1和单纯CNT促进的对应物Cu1Zr1-10%CNT上这个值(2.36×10-3s-1和2.40×10-3s-1)分别的1.22和1.20倍;在CO2加氢产物中甲醇的C-基选择性为~92%,时空产率达176 mg/(h·g-cat.).催化剂的表征研究显示,Co修饰CNT促进的催化剂对H2优良的吸附活化性能对CO2加氢转化频率(TOF)的显著提高起着重要作用.  相似文献   

9.
采用MoO3或CoMoOy与N2/H2程序升温还原反应,合成出了BET比表面积为165m^2/g和158m^2/g的Mo2N和CoMoNx,用CO的加氢反应作为探针反应,并结合原位傅立叶变换-红外光谱(FT-IR)技术评价了合成催化剂的加氢性能。结果表明,氮化钼催化剂具有较高的CO加氢活性和CH4选择性,催化剂的预处理条件对其反应性能有明显的影响,钝化态的氮化钼经在673K下的加氢还原并不能提高其加氢性能。  相似文献   

10.
用自行制备的碳纳米管(CNTs)作为促进剂,制备一类共沉淀型CNTs促进Co-Cu基催化剂.实验发现,该类催化剂对CO加氢制低碳醇显示出异常高的转化活性和生成C2~4-含氧产物,尤其是丁醇(BuOH)和二甲醚(DME)的选择性;在Co3Cu1-11%CNTs催化剂上、5.0 MPa,573 K、V(H2)/V(CO)/V(CO2)/V(N2)=46/46/5/3,GHSV=10 000 mL(STP).h-1.g-cat.-1反应条件下,所观测到的CO转化率达到38.0%,是相同反应条件下不含CNTs的参比体系(Co3Cu1)上观察值(25.3%)的1.50倍;BuOH和DME成为两种最主要的产物,其C-基选择性分别达到45.0%和14.8%,两者的质量百分数合计占C1~4-含氧产物总量的~83%,展示其作为油品添加剂或代用合成燃料的应用前景.实验结果表明,对于CNTs促进的Co3Cu1体系,原料气中适量CO2的存在对CO的转化和含氧产物(尤其是BuOH)的选择生成有显著促进作用.  相似文献   

11.
CO对Cu—Zn—Zr催化剂CO2加氢合成甲醇的影响   总被引:1,自引:0,他引:1  
用四种CO含量不同的原料气对Cu-Zn-Zr催化剂进行CO2加氢合成甲醇的研究.结果表明CO能抑制催化剂表面产生逆水汽变换反应活性位的CO2吸附,从而有效地提高CO2加氢合成甲醇的选择性  相似文献   

12.
考察了碳纳米管与传统氧化物作为载体负载的钴基催化剂用于费-托合成反应的性能.采用等体积浸渍法制备了钴基催化剂,并对催化剂进行了TPR、TEM、H2-化学吸附等表征分析.结果表明,Co/SiO2和Co/CNTs催化剂具有较低的还原温度且Co/SiO2催化剂还原峰较狭窄.TEM的结果显示Co/γ-Al2O3催化剂和Co/CNTs催化剂中的钴颗粒粒径分布范围较宽,而Co/SiO2催化剂的钴颗粒粒径分布较为均匀,这是导致其还原峰温范围不同的原因之一.费-托合成反应结果显示Co/CNTs催化剂和Co/γ-Al2O3催化剂具有比Co/SiO2催化剂更高的一氧化碳转化率,而Co/γ-Al2O3和Co/SiO2催化剂具有比Co/CNTs催化剂更高的C5+选择性和较高的α值.  相似文献   

13.
1 Results The synthesis, physical characterization and electrochemical analysis of Pt particles prepared using the surface oxidized carbon nanotubes prepared by chemically anchoring Pt onto the surface of the CNTs with 2.0 mol/L HNO3 by refluxing for 10 h to introduce surface functional groups.The particles of Pt are synthesized by reduction with sodium borohydride of H2PtCl6. The electro-oxidation of liquid methanol of this catalyst as a thin layer on glassy carbon electrode is investigated at room te...  相似文献   

14.
本文运用XPS、过渡应答、原位红外等多种物化测试手段在不同反应条件及原料配比下,对Cu/ZnO/Al2O3催化剂进行了表面表征和活性测试。结果断定:Cu0是吸附与活化 H2、 CO和 CO2的共同中心; CO2对反应的加速作用主要是由于开辟了新的反应途径。本文提出的 CO2存在下 CO加氢合成甲醇反应的多途径机理解释了实验结果,为直接合成燃料甲醇提供了依据。  相似文献   

15.
对用共沉淀法制备并经氢预还原活化的三组份 Cu-ZnO-Al_2O_3 和四组份Cu-ZnO-Al_2O_3-M_2O_3(M=Sc~(3+)、Cr~(3+)或In~(3+))铜基甲醇合成催化剂进行 XPS,XPS-Augcr,TPD谱表征及CO吸附量测定,研究铜基甲醇合成催化剂活性表面铜的化学态。根据原子价补偿原理及本实验结果,在温和还原条件下,催化剂活性表面存在少量Cu~+,它是 CO、H_2 的吸附活性位。  相似文献   

16.
以共沉淀法制备的 Ni-Al、Ni-Cu-Al和 Ni-L a-Al为催化剂 ,甲烷为碳源 ,在 773~ 10 2 3 K制备碳纳米管 ( CNTs) ,并通过 TEM和 XRD表征了 CNTs的部分性质 ,讨论了催化剂、反应时间和反应温度对 CNTs形貌、结构和产率的影响。结果表明 ,不同催化剂在相同温度下制备的 CNTs的形貌和结构有很大差异。Ni-Al催化剂上生长的 CNTs倾向于碳纤维结构。Ni-Cu-Al催化剂上生长的 CNTs具有节状结构。Ni-La-Al催化剂上生长的 CNTs管腔较大、管径较均匀且石墨化程度最高。在 10 2 3 K下 ,各种催化剂的活性都是在反应初期较高 ,然后随反应时间降低。Ni-Al催化剂在 2 h后活性降低很快 ,在 5 h后完全失活。Ni-Cu-Al和 Ni-La-Al催化剂活性随时间降低较缓慢 ,最后分别在 10 h和 15 h后完全失活。各种催化剂上生长的CNTs的产率随反应温度变化而变化。Ni-Al、Ni-Cu-Al和 Ni-La-Al催化剂上制备的 CNTs分别在 92 3 K、973 K和高于 10 2 3K左右达到最高产率  相似文献   

17.
CO加氢合成甲醇Cu-Mn~(2+)/SiO_2催化剂的研究   总被引:1,自引:1,他引:1  
负载型Cu/SiO_2或Mn/SiO_2催化剂对CO加氢合成甲醇反应的催化活性甚低,而Cu-Mn~(2+)/SiO_2催化剂的催化活性却很高,研究表明,Mn~(2+)的加入使催化剂表面的分散度增大,并可能通过Cu-Mn~(2+)间的有关轨道相互作用或通过Cu、Mn与载体间的氧桥间接发生作用,使催化剂吸附氢和异裂氢的能力增大,为HCOO~-后续加氢提供充足的氢原,从而提高Cu-Mn~(2+)/SiO_2催化剂CO加氢合成甲醇的催化活性。  相似文献   

18.
利用原位和非原位紫外 Raman谱法 ,对以 CH4 为碳源 ,由催化法制备的多壁碳纳米管( MWCNTs) ,K -修饰的该类 MWCNTs,以及它们对 H2 的吸附体系进行了 Raman谱表征 ,观测到可分别归属于类石墨结构的基频模 D和 G以及它们的三阶组合频 ,表面 C-H3基和 C-H2 基等的特征Raman峰 ;H2 在这类碳纳米管上的吸附态包括解离吸附生成表面 C-H3和非解离吸附分子氢 H2 ( a) ;在相同实验条件下 ,K -修饰体系上这两类氢吸附物种的表面浓度都比未经 K -修饰的相应体系高 .  相似文献   

19.
采用浸渍法制备了Ni/Sepiolite及Ni_Sm/Sepiolite催化剂 ,并测定了催化剂的CO和CO2 甲烷化活性。用TPR、H2 _TPD、CO化学吸附和XPS等手段研究了催化剂的表面性质。结果表明 ,Sm2 O3的加入提高了Ni/Sepio lite催化剂的CO和CO2 甲烷化活性 ,增加了催化剂中Ni的分散度、活性表面积 ,降低了电子结合能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号