首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
系统{dx=a_1x~2+b_1xy+a_2x+b_2y+c_2dt{dydt=a_1xy+b_1y~2+a_3x+b_3y+c_3是一种特殊的二次微分系统.系统(1)的V.I.Arnold问题是该问题中n=2的一种特殊情况.关于V.I.Arnold问题当n=2时的一般情况均已完全解决.(请参阅[1][2][3][4]).本文想从系统(1)右端多项式的系数中构造一个矩阵A,进而通过矩阵A的若唐(C.Jordan)法式.把系统(1)分类,从而由矩阵A的特征根、特征向量来直接确定奋点及其稳定性.  相似文献   

2.
本文对一类n元轮换式V(a_1,…,a_n)=a_3/(a_1+a_2)+…+a_2/(a_n+a_1)构成的不等式V(a_1,…,a_n)=a_3/(a_1+a_2)+…+a_2/(a_n+a_1)≥n/2给出一般性的证明.据此,其它一些类似的轮换不等式可用相同的方法加以证明,从而得到相应的结论.  相似文献   

3.
<正> 张苍厚等人先后提出过如下结果:(1)若0≤a_1≤a_2≤a_3≤a_4,且a_2+a_3=a_1+a_4,则(2)若0≤a_1相似文献   

4.
柯召、孙琦提出了如文题所述的猜测.单墫证明了这一猜测.本文的目的是用初等方法证明这一猜测.定理1.p 为素数,从任给2p-1个整数中必可选出 p 个使其和为 p 之倍数.证:任给2p-1个整数 a_1,a_2,…,a_2p-1.从中选出 p 个作和.共有 C_(2p-1)~p=C_(2p-1)~(p-1)个和:S_1=a_1+a_2+…+a_p,S_2=a_1+a_2+…+a_(p-)+a_(p+1)  相似文献   

5.
设a_1,a_2,a_3,a_4是正整数,(a_1,a_2,a_3,a_4)=1,线性型a_1x_1+a_2x_2+a_3x_3+a_4x_4 ,x_i≥0,i=1,2,3,4.不能表出的最大整数记为M_4.而线性型ax+by+cz+dw,x≥1,y≥1,z≥1,w≥1,不能表出的最大整数记为N_4~′.其中,a_1=a·(r_1r_3r_4),a_2=b·(r_1r_2r_4),a_3=c·(r_1r_2r_3),a_4=d·(r_2r_3r_4);r_1=(a_1,a_2,a_3),r_2=(a_2,a_3,a_4),r_3=(a_3,a_4,a_1),r_4=(a_4,a_1,a_2).通过范式组:ak_a=bx_a+cy_a+dz_a,x_a≥0,y_a≥0,z_a≥0,bk_b=cx_b+dy_b+az_b,x_b≥0,y_b≥0,z_b≥0,ck_c=dx_c+ay_c+bz_c,x_c≥0,y_c≥0,z_c≥0,dk_d=ax_d+by_d+cz_d,x_d≥0,y_d≥0,z_d≥0.算出N_4~′,则M_4=(r_1r_2r_3r_4)N_4~′-a_1-a_2-a_3-a_4.  相似文献   

6.
设a_1,a_2,…,a_k是正整数,(a_1,a_2,…,a_k)=1。线性型f_k=a_1x_1+a_2x_2+…+a_kx_k(x_1,x_2,…,x_k取非负整数)所不能表出的最大整数及f_k不能表出的正整数的个数分别以M_k及N_k表示。关于如何求出M_k是一个尚未完全解决的问题,柯召教授首先讨论了k=3的一个情形。在柯召教授的指导下,陆文端又讨论了k=3的另外一些情形。J.B.Roberts对a_1,a_2,…,a_k成算术级数的情形得出了M_k的公式。除重穆推广柯召教授的结果证明了下面的一个定理:命D_i=(a_1,a_2,…,a_i),  相似文献   

7.
我们证明了孙智伟的下述猜想:对任意不等于3的正整数n,存在{1,2,dos,n)的一个全排列(a_1,…,a_n)使得a_1=1,a_n=n,并且a_1+a_2,a_2+a_3,…,a_(n-1)+a_n,a_n+a_1都与n互素  相似文献   

8.
本文主要讨论了含单位元的无零因子环内特征与交换的关系,得到如下主要结果: 定理1 设R是一个含单位元且无零因子的环,|R|≥p,且~a∈R,(a+e)~p=a~p+e,则charR=p。 定理2 设R是一个含单位元且无零因子的环,存在质数p>1,p≠CharR,使得~a∈R,(a+e)~p=a~p+e,则R为一个有限域。 定理3 假设1)R是一个特征为零的、含单位元、无零因子的环; 2)~x,y∈R,存在整数a_1,a_2,a_3,b_1,b_2,b_3使得:a_1xy~2+a_2yxy+a_3x~2y+b_1xyx+b_2yx~2+b_3y~2x=0则当R为可换时,(a_1+2b_3)(2a_1+a_2)(b_2+2a_3)(2b_1+b_2)≠0 反之,当此式左端任一因子不为零时,R为一个交换环。  相似文献   

9.
本文给出了带参数五次代数方程f(x)=x~5+a_1x~4+a_2x~3+a_3x~2+a_4x+a_5=0有一对纯虚根且剩余根均具有负实部的一个充要条件。  相似文献   

10.
线性方程组 a_(11)x_1+a_(12)x_2…a_(1n)x_n=b_1 …………………………………………… a_(n1)x_1+a_(n2)x_2+…+a_(nn)x_n=b_n 的解法有多种,本文给出一个新的解法——“0.618”方法,并证明了解法的收敛性及唯一性。  相似文献   

11.
J.B.Roberts在[1]中证明了下面一个定理:a_0,a_1,…,a_s是互素的正整数a_0≥2d>0且a_j=a_0+jd(j=1,2,…,s)则,线性型  相似文献   

12.
以g(a_1,a_2,…,a_n)表n元整系数线性型a_1x_1+…+a_nx_n,a_i>0,(a_1,…,a_n)=1,不可非负整表出之最大整数,D_(n-1)=(a_1,…,a_(n-1)).注记中将证明g(a_1,…,a_n)=D_(n-1)·g(a_1/D_(n-1),…,a_(n-1)/D_(n-1),a_n)+(D_(n-1)-1)a_n。并由此对Brayer关于g(a_1,…,a_n)之上确界的著名结果和Roberts关于g(a,a+d,…,a+sd)的精确结果分别给出一个十分简洁的新证明.  相似文献   

13.
设在空间中的一个直角笛卡尔坐标系(以下均简称坐标系)oxyz下给定一个二次方程为 a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(13)xz+2a_(23)yz+a_(33)z~2+2a_(41)x+2a_(42)y+2a_(43)z+a_(44)=0。 本文将阐明,存在者一个由方程(1)中诸系数表出的(自由)向量b,利用它,不仅可以使得一般二次方程的化简程序“向量化”,而且能够给出在化简过程中出现的,有关点的位置和数量的内在几何意义。此外,本文给出在n=3这一场合的二次型之惯性律的一个新的证明。  相似文献   

14.
在研究随机排徊问题中,我们证明了两类级数和的公式,下面给出它的证明.因证明中用到数列母函数,为此先介绍一下这个概念.定义设a_0,a_1,a_2,···是实数的一个序列,如果A(S)=a_0+a_1S+a_2S~2+···z在某个区间-S_0相似文献   

15.
运用幂等矩阵核空间的性质证明复数域上两个非零幂等矩阵P,Q的组合a_1P+b_1Q+a_2PQ+b_2QP+a_3PQP+b_3QPQ+a_4PQPQ+b_4QPQP+a_5PQPQP+b_5QPQPQ+a_6PQPQPQ(其中a_i,b_j∈C(1≤i≤6,1≤j≤5)且a_1b_1≠0)在条件(PQ)~3=(QP)~3下的秩与系数的选取无关,进而证明其群逆的存在性,并得到了组合aP+bQ+cPQ+dQP的群逆计算公式.  相似文献   

16.
设S为单位园盘内的正规单叶函数类。若f(z)=z+a_2z~2+a_3z~3+…∈S则当λ∈[0,1]时,Fekete和Szeg(?)证明了著名的结果(?)|a_3-λa_2~2|=1+2exp(-(2λ/(1-λ))) 本文考虑了S的一个子类凸函数类C,证明了不等式和-1/2≤|a_3|-|a_2|≤1/3对f∈C成立。  相似文献   

17.
本文给出了Robin边值问题(其中a_(?)≥0,b_(?)≥0,a_0+a_1,b_0+b_1>0,a_0+b_0>0)在主要假设f_x≥-β,f_(?)分别在有界和某种无界情形下,有唯一解的一个充分条件。  相似文献   

18.
在平面上,任给二次曲线Γ:F(x,y)≡a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(12)x+2a_(23)y+a_(33)=0 (1)和一点 M_0(x_0,y_0),则过 M_0的直线 l 的方程可写为x=x_0+Xt,y=y_0+Yt.X:Y 是 l 的方向,-∞相似文献   

19.
设a,b,c为正整数,(a,b,c)=1,x,y,z为非负整数,(a,b)=d,a=a_1d,b=b_1d,u,v为非负整数,当a_1u+b_1v能够表出c时,(1) ax+by+cz所不能表出的最大整数为M=(ab)/(a,b)+c(a,b)-a-b-c. [1]在a_1u+b_1v不能表出c时,c可以表成c=a_1r-b_1s或c=b_1s-a_1r,其中 a_1r+b_1s相似文献   

20.
由递推式a_(n+1)=2a_n+a_(n-1) a_0=l,a_1=2,n∈N(l)给出的数列十分有趣,由它可得到勾股为连续自然数的全部基本的勾股数组.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号