首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
用量子力学与分子力学组合的ONIOM方法, 考察布洛芬(Ibu)分子限域在螺旋手性单壁碳纳米管(SWCNT)内的手性转变机理. 结果表明: 螺旋手性单壁碳纳米管的直径越小, 限域在其孔道内的布洛芬分子形变越明显; 布洛芬分子在SWCNT(6,4)和SWCNT(7,4)内的旋光异构只有一个反应通道, 在SWCNT(8,5)内的旋光异构有两个反应通道; 布洛芬分子限域在SWCNT(6,4),SWCNT(7,4)和SWCNT(8,5)内时, 旋光异构反应决速步骤的内禀能垒分别为24795,27383,29224 kJ/mol, 总包能垒分别为27896,29191,32588 kJ/mol. 可见S-Ibu的旋光异构易在较小孔径的螺旋手性SWCNT内实现, SWCNT(6,4)可以作为布洛芬分子旋光异构的纳米反应器.  相似文献   

2.
采用量子力学与分子力学组合的ONIOM方法,研究了两种构象的赖氨酸分子限域在螺旋手性单壁碳纳米管内的手性转变机理.结构分析表明:纳米管管径越小,限域在其中的赖氨酸分子骨架形变越明显,手性碳上的氢原子与氨基上氮的氮原子距离越小.势能面计算表明,两种构象的赖氨酸分子限域在SWCNT(6,4)时,旋光异构反应决速步的吉布斯自由能垒分别是194.72和170.08kJ·mol~(-1),分别由质子从手性碳向氨基氮和质子从手性碳向氨基氮与氨基上的质子向羰基氧双质子协同迁移的过渡态产生的.与裸反应的此通道决速步能垒252.6kJ·mol~(-1)相比较有显著降低.两种构象的赖氨酸分子限域在SWCNT(6,4)内旋光异构反应的表观能垒分别是160.00和178.59kJ·mol~(-1).他们限域在SWCNT(7,4)内时,旋光异构反应决速步的能垒分别是238.28和217.18kJ·mol~(-1);限域在SWCNT(8,4)内时,旋光异构反应决速步的能垒分别是253.00和250.11kJ·mol~(-1).结果表明:螺旋手性单壁碳纳米管的孔径越小,对赖氨酸分子手性转变反应的限域催化作用越好;限域在SWCNT(6,4)内的赖氨酸分子构象1更容易旋光异构.  相似文献   

3.
采用量子力学与分子力学组合的ONIOM方法, 研究限域在扶手椅型单壁氮化硼纳米管(SWBNNT)内赖氨酸(Lys)分子手性转变的反应机理. 采用原子中心密度矩阵传播(ADMP)分子动力学方法, 研究Lys分子在SWBNNT(5,5)内手性转变反应通道入口与出口势能面上的动态反应路径, 给出中间体和产物的微观动态反应图像. 结果表明: 随着纳米管管径的减小, 限域其中的Lys分子骨架C原子间的键角明显增大; 手性C上的H与氨基N的距离逐渐变小; 在SWBNNT(5,5)内, 通过2个基元反应Lys分子实现了手性转变; 在SWBNNT(6,6)和SWBNNT(7,7)内, 通过3个和4个基元反应Lys分子实现了手性转变 ; 在SWBNNT(5,5)内, Lys分子手性转变反应决速步骤自由能垒降为最低值190.1 kJ/mol. 在 SWBNNT(7,7)内, 决速步骤能垒与裸反应基本相同.  相似文献   

4.
采用量子力学与分子力学组合的ONIOM方法,研究限域在扶手椅型单壁氮化硼纳米管(SWBNNT)内赖氨酸(Lys)分子手性转变的反应机理.采用原子中心密度矩阵传播(ADMP)分子动力学方法,研究Lys分子在SWBNNT(5,5)内手性转变反应通道入口与出口势能面上的动态反应路径,给出中间体和产物的微观动态反应图像.结果表明:随着纳米管管径的减小,限域其中的Lys分子骨架C原子间的键角明显增大;手性C上的H与氨基N的距离逐渐变小;在SWBNNT(5,5)内,通过2个基元反应Lys分子实现了手性转变;在SWBNNT(6,6)和SWBNNT(7,7)内,通过3个和4个基元反应Lys分子实现了手性转变;在SWBNNT(5,5)内,Lys分子手性转变反应决速步骤自由能垒降为最低值190.1kJ/mol.在SWBNNT(7,7)内,决速步骤能垒与裸反应基本相同.  相似文献   

5.
采用密度泛函理论的B3LYP方法,微扰理论的MP2方法及自洽反应场(SCRF)理论的SMD模型方法,研究两种稳定构型谷氨酸分子的手性转变及水溶剂化效应.结果表明:构型1的优势通道为通道a和通道b,决速步骤自由能垒分别为242.3,245.7kJ/mol;构型2的优势通道为通道a,决速步骤自由能垒为243.5kJ/mol;决速步骤能垒均由质子从手性C向氨基N迁移的过渡态产生;水溶剂化效应使构型1的优势通道决速步骤自由能垒降至101.5kJ/mol;决速步骤的反应速率常数在298.15K时为1.002×10~(-5)s~(-1),在310.00K时为3.802×10~(-5)s~(-1).可见谷氨酸分子在生命体内富水环境下可缓慢地实现旋光异构.  相似文献   

6.
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法,研究两种最稳定构型的蛋氨酸分子(Met)基于氨基作为质子迁移桥梁的旋光异构反应.结果表明:基于氨基作为质子迁移桥梁的蛋氨酸分子旋光异构反应有2条通道a和b;构型1的主反应通道为通道a,决速步骤为第1基元反应,自由能垒为264.2kJ/mol,由质子从手性C直接向氨基N迁移的过渡态产生;构型2的主反应通道也为通道a,决速步骤为第2基元反应,自由能垒为266.1kJ/mol,由羧基异构后质子从手性C向氨基N迁移的过渡态产生;两种构型的Met分子旋光异构速控步骤的反应速率常数分别为3.04×10~(-34),1.41×10~(-34) s~(-1).  相似文献   

7.
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法, 考察赖氨酸分子基于氨基作为质子转移桥梁的手性转变机理以及水分子和羟基自由基对氢迁移反应的催化作用. 结果表明, 赖氨酸分子手性转变有2个通道a和b, 通道a为主反应通道, 决速步骤裸反应Gibbs自由能垒为252.6 kJ/mol, 2个水分子构成的链以及羟基自由基和水分子构成的链使通道a决速步骤的自由能垒分别降为119.5,98.5 kJ/mol. 表明水分子和羟自由基对H迁移反应有较好的催化作用, 生命体内的羟基自由基是导致左旋赖氨酸旋光异构的主要原因.  相似文献   

8.
采用组合量子化学ONIOM方法,基于氨基作为氢迁移桥梁,考察单壁碳纳米管(SWCNT)与水复合环境下α-丙氨酸分子(α-Ala)的手性转变机理.结果表明:基于氨基作为氢迁移桥梁的手性转变反应有a和b两个通道,其中通道a最具优势;水与扶手椅型SWCNT复合环境对氢迁移反应具有较好的催化作用;在SWCNT(8,8)的限域环境下,3个水分子构成的链使主反应通道的决速步骤能垒从裸反应的266.1kJ/mol降至117.8kJ/mol.表明SWCNT(8,8)与水构成的复合环境可作为实现α-Ala手性转变的理想纳米反应器,生命体内α-Ala分子可在类似的纳米环境实现旋光异构.  相似文献   

9.
采用组合的量子化学ONIOM方法,研究MOR分子筛12元环孔道对赖氨酸分子手性转变反应的限域催化.结果表明:限域在MOR分子筛12元环孔道的客体与裸环境下的构象不同,过渡态a_TS2@MOR的1C—5N键长缩短,中间体SINT1@MOR的12H与9O,11H与9O以及12H与10O间的距离缩短;手性转变反应有a,b,c 3个通道;通道a为手性转变反应的主反应通道,决速步骤的Gibbs自由能垒为229.7kJ/mol,比裸反应决速步骤的Gibbs自由能垒252.6kJ/mol明显降低,即MOR分子筛对赖氨酸分子的手性转变反应有一定的限域催化作用.  相似文献   

10.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法及自洽反应场(SCRF)理论的SMD模型方法,研究两种最稳定构型色氨酸分子手性转变的反应机理及水溶剂化效应.结果表明:两种构型的色氨酸分子均有3条手性转变通道a,b,c;构型1的主反应通道为通道a,决速步骤自由能垒为256.7kJ/mol,构型2的主反应通道为通道a和c,决速步骤自由能垒分别为258.8,256.7kJ/mol,决速步骤能垒均来自于质子从手性C向氨基N迁移的过渡态;水溶剂效应使构型1的主反应通道决速步骤能垒降至113.4kJ/mol;单体色氨酸分子具有稳定性,水溶剂环境下色氨酸分子的手性转变可以缓慢进行.  相似文献   

11.
采用密度泛函理论的B3LYP方法,微扰理论的MP2方法及自洽反应场(SCRF)理论的SMD模型方法,研究气相S-异亮氨酸向R-别异亮氨酸的旋光异构机理及水溶剂化效应.结果表明:该反应有a,b,c 3个通道,在通道a和c实现旋光异构反应需经过3个基元反应,在通道b实现旋光异构反应需经过4个基元反应;a为主反应通道,决速步骤Gibbs自由能垒为255.0kJ/mol,由质子从α手性C向氨基N迁移的过渡态产生,决速步骤的反应速率常数为1.25×10-32 s~(-1);水溶剂效应使决速步骤能垒降至114.1kJ/mol,反应速率常数增至2.73×10-7 s~(-1),即水环境对S-异亮氨酸旋光异构具有较好的催化作用.  相似文献   

12.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了标题反应.势能面计算表明:标题反应的决速步骤均为第2基元反应,决速步能垒来自于质子从手性碳向氨基氮转移的过渡态.甲醇溶剂环境下构象1和2手性转变决速步的吉布斯自由能垒分别为109.8 kJ·mol~(-1)和111.0 kJ·mol~(-1),比气相甲醇环境下的决速步能垒134.2 kJ·mol~(-1)和130.8 kJ·mol~(-1)均有明显降低,比水环境下的决速步能垒122.5 kJ·mol~(-1)也明显降低,比裸环境下的决速步能垒266.1 kJ·mol~(-1)大幅降低,比限域在SWBNNT(5,5)内的决速步能垒为201.1 kJ·mol~(-1)也显著降低.结果表明:甲醇分子簇对α-丙氨酸分子的手性转变具有明显的催化作用,甲醇溶剂效应对质子从手性碳向氨基氮的转移反应具有较好的助催化作用.  相似文献   

13.
在MP2/6-311++G(2-df,pd-)//B3LYP/6-31+G(d,p)双理论下, 采用自洽反应场(SCRF)理论的SMD模型方法, 研究水液相环境下, 两种稳定构象赖氨酸分子基于氨基氮为氢迁移桥梁的旋光异构过程及羟自由基致其损伤的机理. 势能面计算结果表明: 在水液相环境下, 当2个和3个水分子簇作为氢迁移媒介时, 构象1旋光异构的决速步骤Gibbs自由能垒分别为116.02,112.71 kJ/mol, 构象2旋光异构的决速步骤Gibbs自由能垒分别为110.27,114.29 kJ/mol; 当羟自由基与水分子链作为氢迁移媒介时, 羟自由基抽氢致赖氨酸分子构象1和构象2损伤的Gibbs自由能垒分别为-53.06,-56.05 kJ/mol, 均为无势垒反应. 即在水液相环境下, 赖氨酸分子可缓慢地旋光异构, 羟自由基可迅速致赖氨酸损伤.  相似文献   

14.
采用QM与MM组合的ONIOM方法,对标题反应进行了研究。结构分析表明:SWBNNT (硼氮纳米管)(5,5)的限制致缬氨酸分子骨架明显形变,同时SWBNNT (5,5)也发生了形变。计算表明:以氨基氮为质子转移桥梁的旋光异构是优势反应通道。缬氨酸限域在SWBNNT (5,5)时,旋光异构决速步的内禀能垒是318.41 kJ·mol~(-1);缬氨酸限域在SWBNNT (6,6)时,质子迁移与羟基旋转同步与分步进行的旋光异构决速步的内禀能垒分别是306.42和306.93 kJ·mol~(-1)。均比裸反应优势通道的决速步能垒268.93 kJ·mol~(-1)显著升高。缬氨酸限制在SWBNNT (7,7)时,旋光异构决速步的内禀能垒是262.81 kJ·mol~(-1),与裸反应相差无几。结果表明:SWBNNT (5,5)和SWBNNT (6,6)的限域对缬氨酸旋光异构具有明显的负催化作用。  相似文献   

15.
采用量子力学与分子力学组合的ONIOM方法,研究了限域在几种不同尺寸的扶手椅型单壁碳纳米管内赖氨酸分子的手性转变机理.结构分析表明:随着纳米管管径的减小,限域其中的赖氨酸分子构型的形变越来越明显,骨架碳原子间的键角明显增大;手性碳上的H与氨基N的距离逐渐变小.反应通道研究发现:标题反应在不同尺寸的纳米管内具有不同的通道,在SWCNT(5,5),SWCNT(6,6)和SWCNT(7,7)分别具有1个、4个和3个反应通道.势能面计算表明,赖氨酸限域在SWCNT(5,5)时,手性转变的吉布斯自由能垒被降到最低值192.8kJ·mol-1,是由手性碳上的质子向氨基氮和氨基上的质子向羰基氧双质子协同迁移的过渡态产生的.与裸反应的此通道决速步能垒252.6kJ·mol-1相比较有显著降低.结果表明:SWCNT(5,5)对赖氨酸的手性转变反应具有较好的限域催化作用,可作为实现赖氨酸旋光异构的纳米反应器.  相似文献   

16.
采用量子力学与分子力学组合的ONIOM方法,研究了布洛芬在MOR分子筛12元环孔道限域环境的手性转变.反应通道研究发现:标题反应有7条路径,质子从手性碳的一侧向另一侧迁移可分别以羰基、甲基和羰基联合、羧基以及羧基和苯环联合作桥实现.反应势能面计算发现:在羧基内实现质子迁移后,手性C上的质子以新羰基O为桥迁移到苯环,接着苯环上的质子又以羰基为桥在纸面里迁移到手性碳的手性转变过程是主反应路径.决速步骤是质子从手性碳向新羰基氧的迁移过程,决速步骤吉布斯自由能垒是263.4kJ·mol~(-1),相对于裸反应决速步骤的能垒287.1kJ·mol~(-1)有明显降低.结果表明:MOR分子筛12元环孔道对布洛芬的手性转变反应具有限域催化作用.  相似文献   

17.
在MP2/6 311++G(3-df,2pd-)//WB97X-D/6-311++G(-d,p-)双水平研究苯丙氨酸(Phe)分子的手性对映体转变机理, 并用分子中的原子理论(AIM)分析驻点的成键特征. 结果表明: 经过羧羟基旋转、 质子迁移、 碳 碳键旋转和氨基翻转的一系列过渡态, Phe分子在质子以氨基氮为桥梁迁移的通道a和以羰基氧与氨基氮顺次为桥梁迁移的通道b内, 实现了手性对映体转变; 当2个水分子簇作为质子迁移媒介时, 在通道b中增加了质子仅以羰基氧为桥梁迁移的反应路径; 通道a具有优势, 速控步骤的内禀能垒为25971 kJ/mol, 反应的表观能垒为27026 kJ/mol; 2个水分子簇催化使速控步骤的内禀能垒降至126.47 kJ/mol, 反应的表观能垒降至80.80 kJ/mol; 考虑零点振动能后, 质子从氨基氮向羰基氧迁移的能垒消失. 即水分子(簇)催化可使Phe分子实现手性对映体转变.  相似文献   

18.
在MP2/6 311++G(3-df,2pd-)//WB97X-D/6-311++G(-d,p-)双水平研究苯丙氨酸(Phe)分子的手性对映体转变机理, 并用分子中的原子理论(AIM)分析驻点的成键特征. 结果表明: 经过羧羟基旋转、 质子迁移、 碳 碳键旋转和氨基翻转的一系列过渡态, Phe分子在质子以氨基氮为桥梁迁移的通道a和以羰基氧与氨基氮顺次为桥梁迁移的通道b内, 实现了手性对映体转变; 当2个水分子簇作为质子迁移媒介时, 在通道b中增加了质子仅以羰基氧为桥梁迁移的反应路径; 通道a具有优势, 速控步骤的内禀能垒为25971 kJ/mol, 反应的表观能垒为27026 kJ/mol; 2个水分子簇催化使速控步骤的内禀能垒降至126.47 kJ/mol, 反应的表观能垒降至80.80 kJ/mol; 考虑零点振动能后, 质子从氨基氮向羰基氧迁移的能垒消失. 即水分子(簇)催化可使Phe分子实现手性对映体转变.  相似文献   

19.
采用量子力学与分子力学相结合的ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究α-Ala分子在SWBNNT(10,5)与水复合环境下基于氨基作为H转移桥梁的手性转变机制.结果表明:手性转变反应有2个通道a和b,反应通道a以氨基作为H转移桥梁,反应通道b依次以羰基和氨基作为H转移桥梁,H迁移能以1个或2个H2O分子为媒介实现;a通道的最高能垒来自H从手性碳向氨基转移的过渡态,以2个H2O分子作为H转移媒介时,高能垒降为126.5kJ/mol,远小于单体在a通道的能垒266.1kJ/mol;b通道的最高能垒来自H从手性碳向羰基转移的过渡态,以2个H2O分子作为氢转移媒介时,高能垒降为155.6kJ/mol,远小于单体在b通道的能垒319.9kJ/mol.即SWBNNT(10,5)与水复合环境对α-Ala分子的手性转变反应过程具有较好的催化作用.  相似文献   

20.
基于MP2/6-311++G(2df,pd)//B3LYP/6-31+G(d,p)双理论水平, 用自洽反应场(SCRF)理论的SMD模型方法, 考察水环境下氢氧根水分子簇催化缬氨酸旋光异构及羟自由基致其损伤机理. 结果表明: 缬氨酸的旋光异构可在2个通道a和b实现, 通道a为氢氧根水分子簇与α-H和氨基通过氢键作用形成底物, 氢氧根抽取α-H后, α-C在另一侧抽取水分子的H; 通道b为氢氧根水分子簇与α-H和羰基通过氢键作用形成底物, 氢氧根抽取α-H后, α-C在另一侧抽取水分子的H, 通道b中的水分子辅助羟自由基抽取α-H可致缬氨酸损伤; 水液相环境下, 构象Val-1(氨基羧基间为单氢键)和构象Val-2(氨基羧基间为双氢键)在通道a旋光异构的决速步骤能垒分别为60.57,65.24 kJ/mol, 在通道b旋光异构的决速步骤能垒分别为56.76,64.11 kJ/mol, 羟自由基水分子簇致缬氨酸在通道b的损伤为温和的放热反应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号