首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
根据均裂的化学键类型提出了五氟乙烷(C2HF5)的9条初级裂解反应路径,采用DFT/B2LYP/6.31G*、DFT/B2LYP/6.311G**、MP2/6.31G*和MP2/6.311G**方法计算了C2F5H各裂解反应的焓变、中间态分子模型以及反应中生成的卡宾的能态。结果表明C2HF5裂解最易发生H转移反应生成C2F4;伴随H转移生成CF3CF:卡宾,F转移生成CHF:,C—C键断裂生成CF2H·和CF3·,自由基或卡宾之间相互结合生成微量的C2F6、C4F8和C4F10等气体产物。热解实验证实,C2HF5在750~850℃时主要发生脱HF反应生成C2F4,随着反应温度的增加,C2HF5分解程度提高。理论计算的C2HF5裂解产物与实验检测结果一致。  相似文献   

2.
应用分子动力学模拟方法研究了2,4,6-三硝基甲苯(TNT)在纯高温下的分解机理,研究结果表明TNT初始分解机理主要为C-NO2键的断裂和NO2-ONO重新排列导致O-N键发生断裂,然后发生H原子转移反应形成H2O,HONO和HO分子;通过对TNT热分解反应物和生成物的研究结果表明N2和H2O分子是TNT分解过程中最稳定的生成物,NO2,NO和HONO分子为TNT热分解过程中的中间产物;在高温4500K,CO,H2,CO2和OH分子出现的频率逐渐提高,表明这几种分子在高温下更容易形成.  相似文献   

3.
采用Gaussian09ONIOM分层计算方法,研究了全氟辛酸(C7F15COOH)热分解消除HF的反应历程,在B3LYP/aug-cc-pvtz//B3LYP/6-31G(d,p)+ZPVE水平下,得到7条可能的反应通道.计算结果表明,全氟辛酸的热降解反应可以通过六元环反应机理、五元环反应机理、直接脱CO、CO2、CF2反应机理平行进行得到产物,其中以五元环过渡态进行反应生成CO、CF3(CF2)5CFO具有相对较低的活化能,为反应的主要通道,生成产物CO2和CF3(CF2)4CF=CF2的产率较低;PFOA的H异构化后经过五元环过渡态消除HF分子并形成环氧中间体,此过程能垒高达183.4kJ/mol,相较于其他各步能垒最高,为整个反应的速控步骤,理论预测的主要产物与实验基本吻合.研究还表明,强酸性条件有利于PFOA的降解.  相似文献   

4.
用B3LYP/6-311 G(d,p)方法对甲醇单分子解离反应的机制进行了研究.对各个物种进行了结构优化和振动分析,并在同样的基组水平上用包括非迭代三重激发的CCSD(T)方法计算单点能,给出了包含零点能校正的各反应通道的势能剖面图,确定了可能存在的过渡态和反应势垒.研究发现,甲醇分子中原子氢(H)的消除反应有3个通道,O—H键和C—H键断裂是两种直接解离的方式,另外一种则是O—H键断裂后生成的产物CH3O具有足够的能量越过较低的活化能垒而进行再次分解所致;分子氢(H2)的消除反应有4中心消除和两种不同类型的3中心消除方式;而C—O键的断裂过程亦属于直接解离方式.  相似文献   

5.
以激波管作为加栽工具、利用研制的瞬态谱测试技术,对苯在冲击波作用下的快速反应光谱及微观机理进行研究.研究表明:苯在冲击条件下,分子高温分解反应是从C—H键开始的,而不是C—C键.C—H键在温度达到一定值时首先断裂,进行C6H6+(M)→C6H5+H+(M)的反应.此外,苯在冲击条件下及易发生高温分解反应,对此提出了一种防止杂色光误触发的新方法.  相似文献   

6.
采用MD、MD9D和正庚烷三组分作为生物柴油混合替代物,替代物机理包含3 299种组分、10 806个基元反应。应用CHEMKIN-PRO反应速率分析法对燃烧氧化过程中燃料分子高低温主要反应路径和重要中间组分衍化过程进行了详细探究。结果表明:MD和MD9D在低温阶段主要通过脱氢加氧、异构化反应以及酮类物质的分解反应进行消耗,高温阶段主要是低温反应中间产物C—O、C—C键β分解反应、部分高温脱氢以及异构化反应最终生成C_2H_4等小分子产物。另外,MD和MD9D中不同碳原子位置C—H键能不同,邻近羧基以及C≡C双键碳原子处C—H键较弱,易发生脱氢反应生成烷酯基。在过氧酯基异构化生成过氧羧酯基过程中,不同环数过渡环张力大小以及反应势垒不同,异构化难易程度不同,而六元过渡环的张力较小,反应势垒较低,最易发生异构化反应,异构化反应产物更多。  相似文献   

7.
采用电化学循环伏安法和紫外吸收光谱方法,研究了L-半胱氨酸(L-Cys)与苯二酚污染物之间相互结合的作用机理和电子传递信息.结果表明:固定在金表面、排列呈有序结构的单分子层膜状态的L-半胱氨酸与苯二酚相互作用时,对三种苯二酚异构体的氧化还原反应均有良好的电催化作用,有利于电子转移过程的发生;而分散游离于水溶液中、呈无序游离结构状态的L-半胱氨酸与苯二酚相互作用时,对氧化还原反应起阻碍作用,不利于电子转移.进一步研究表明,二者之间的相互作用不涉及化学键强作用力,未发生分子化学键的断裂和新键的形成.半胱氨酸与苯二酚污染物通过N…H—O氢键,结合形成L-Cys.C6H6O2或(L-Cys)2.C6H6O2缔合物.分子间结合点数目的不同,导致其电化学活性和行为的差异,并使生物分子的功能发生变异.  相似文献   

8.
以TFT-LCD液晶为实验材料,研究了其焚烧失重特征,分析其焚烧产物并对其过程进行推测。结果表明,由多种单体化合物组成的TFT-LCD液晶材料焚烧反应过程主要发生在150~380℃,该过程导致约90%液晶损失;在焚烧过程中液晶材料首先发生分解反应,分解产物生成的先后顺序取决于其单体化合物的主要化学键键能大小;分解过程产生的烃类自由基和芳香族自由基极不稳定,前者进一步分解生成C原子更少的丙烯等烃类,后者会因高温进一步分解乃至脱F,同时自由基团之间重组发生再合成反应;液晶焚烧产生由多种芳香族化合物组成的混合物,焚烧温度高易生成PAHs和HF。TFT-LCD焚烧产物绝大多数是有毒有害物质,不宜进行焚烧处理。  相似文献   

9.
采用密度泛函DFT(B3LYP)方法,在6311G**,6—311++G**以及cc-pvtz基组水平上,计算了2-硝基丙烯在热解反应过程中反应物、过渡态和中间体的几何结构,研究了各反应沿极小能量途径反应分子几何构型的变化,并通过电子密度拓扑分析,讨论了反应过程中化学键断裂、生成的变化规律.结果表明,2-硝基丙烯的热解反应存在2种反应机理,一是甲基上的H原子进攻硝基上的O原子直接生成CH2CCH2和HNO2,反应位垒为199.6kJ/mol;二是O原子进攻亚甲基C原子首先生成四元环状中间体,住垒为200.3kJ/mol,环状中间体进一步发生C—C键和N-0断裂生成CH2CNO和CH2O,此反应是一个一步反应,位垒为144.7M/mol,所得环状中间体的分解反应机理与现有的AM1的研究结果不同.  相似文献   

10.
采用密度泛函方法研究了锰、钴卟啉的高价氧化物种(PMnIVO,PCoIVO)氧化环己烷制备己二酸反应的机理。计算通过计算环己烷第一步羟基化、第二步羟基化、C—C键断裂生成1,6己二醛以及1,6己二醛氧化生成己二酸四步反应历程,得到了各基元反应的过渡态,分析了其几何结构、反应的活化能以及反应焓。发现第二步羟基化的夺氢基元反应的活化能最高,对于PMnIVO,PCoIVO分别为31.31 kcal·mol-1、29.00 kcal·mol-1,是整个反应的速控步骤。1,6环己二醇失去两个氢原子C—C键发生断裂的活化能分别为8.67和8.69 kcal·mol-1,比环己烷羟基化的活化能较低,而且反应焓为负值,说明环己烷C—C键断裂容易发生。研究还发现钴卟啉高价氧化物种能使环己烷的C—C键自行发生断裂,更有利于目标产物的生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号