首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将多壁碳纳米管滴涂于玻碳电极表面,制作多壁碳纳米管修饰玻碳电极(MWNTs/GCE),研究L-半胱氨酸(Cys)在此修饰电极上的电化学行为,并建立一种电化学检测L-半胱氨酸的新方法.在最佳实验条件下,L-半胱氨酸在2.0 × 10-6~1.0×10-4 mol/L浓度范围内与峰电流呈良好线性关系.其回归方程为Ip(μA...  相似文献   

2.
为实现玻碳电极在电化学传感器领域的高灵敏度检测利用, 在pH=5.0的磷酸盐缓冲溶液中, 用恒电位法对玻碳电极进行电化学活化,考察pH值、富集电位及富集时间对Pb2+检测效果的影响, 并研究最佳实验条件下的活化电极对Pb2+的检测性能. 实验结果表明:该活化电极对Pb2+的电化学检测响应电流具有增强效果,并具有检测时间短、灵敏度高的特点;检测线性范围为1×10-10~ 5×10-6 mol/L,最低检出限和定量限分别为3×10-11 mol/L和1.0×10-10 mol/L. 该活化电极在自来水Pb2+的测定中具有较高回收率, 可用于实际水质检测.  相似文献   

3.
石墨相氮化碳纳米薄片(g-C3N4NSs)是一种优良的电化学发光(ECL)材料,在三乙胺(Et3N)为共反应剂时,阳极和阴极都能产生ECL信号,而多巴胺(DA)对其阳极信号产生猝灭作用,但不影响阴极信号.利用这一特点,结合分子印迹聚合物(MIP)技术,构建了一种检测DA的双电位比率MIP-ECL传感器.首先将掺杂有多壁碳纳米管(MWCNTs)的g-C3N4NSs固定在玻碳电极(GCE)上,然后以DA作为模板分子,邻苯二胺(O-PD)作为功能化单体,通过电化学聚合法引入MIP膜,洗脱模板分子后的传感器对DA具有特异性识别能力,利用DA对传感器阴阳极信号不同的影响作用,实现了对DA的高选择灵敏检测.传感器对DA的线性响应范围为1.0×10-10~3.0×10-7 mol·L-1,检出限(LOD)为0.063 nmol·L-1(信噪比S/N为3),与非比率法相比,比率法的重现性得到了明显提高.  相似文献   

4.
以吡咯和邻苯二胺为功能单体,以盐酸环丙沙星为模板,在纳米金和还原氧化石墨烯(AuNP/rGO)修饰的玻碳电极上,采用电化学方法制备分子印迹聚合物薄膜电化学传感器.利用扫描电镜对修饰电极表面形貌进行表征;电化学技术测试分子印迹传感器性能.研究了纳米金和还原氧化石墨烯用量对电极电化学性能的影响,并对传感器制备和测试条件进行了优化.在优化条件下,分子印迹传感器对盐酸环丙沙星具有宽的线性检测范围(1.0×10-8~1.0×10-2 mol/L),低检测限(7.41×10-12 mol/L(S/N=3)),选择性高,稳定性好.此外,该传感器成功检测出了实际药品和牛奶样品中的盐酸环丙沙星.  相似文献   

5.
钒(Ⅳ)-槲皮素极谱络合物吸附波的研究   总被引:1,自引:0,他引:1  
在pH5.2的醋酸盐缓冲底液中,用单扫示波极谱法可获得灵敏的V(Ⅳ)-槲皮素络合物吸附波。钒浓度在1.0×10-7 mol/L--1.0×10-5 mol/L范围内与二阶导数波峰高成正比关系,检测下限为7.0×10-8 mol/L。测得电活性络合物组成为V(Ⅳ)∶Qu=1∶1,条件稳定常数为3.3×105。表面电极反应速率常数ks=3.9 s-1。  相似文献   

6.
研究芦荟大黄素(AE)在单壁碳纳米管修饰玻碳电极(SWNTs/GCE)上的电化学行为.结果表明SWNTs/GCE对AE具有良好的电催化性能.在9.0×10-9~4.4×10-6 mol· L-1范围内,其差分脉冲伏安法(DPV)峰电流与AE的浓度呈良好的线性关系,检测限为5.0×10-9 mol·L-1,可用于药物制剂...  相似文献   

7.
采用水合肼还原法制备了多壁碳纳米管(MWCNT)-石墨烯(GR)纳米复合物(MWCNT-GR),并采用滴涂法制备了此纳米复合物修饰的玻碳电极(MWCNT-GR/ GCE),研究了该修饰电极上异烟肼(Isonia-zid,INZ)的电化学行为.结果表明:在 pH 值为4.0的 HAc-NaAc 缓冲溶液中,异烟肼在0.35 V 处产生一灵敏的不可逆氧化峰.线性扫描伏安法测定异烟肼的线性范围为1.0×10-7~1.0×10-4 mol·L -1,检出限为5.0×10-8 mol·L -1(S/ N =3).用该法测定了异烟肼注射液中异烟肼的含量,结果令人满意.  相似文献   

8.
建立了基于聚溴甲酚紫修饰丝网印刷电极的循环伏安法检测水体中Pb2+的方法,讨论了影响Pb2+检测的因素,确立了最佳检测条件:富集时间为120 s、富集电压为-1.2 V,扫速为0.1 V·s-1。Pb2+在BCP/SPE电极上在1.0×10-7至1.1×10-4 g·L-1范围内呈线性关系,线性方程为,I(μA)=0.786c(μg·L-1)+5.794,R2=0.9984,检出限为1×10-8g·L-1。用加标法对四种水样中的Pb2+进行了检测,四种样品回收率在91%-110%之间,平均回收率为100.25%。  相似文献   

9.
使用滴涂的方法制备多壁碳纳米管(MWNTs)修饰电极(MWNTs/GCE),并利用循环伏安法在该电极表面沉积普鲁士蓝(PB),从而得到普鲁士蓝-多壁碳纳米管复合修饰电极(PB/MWNTs/GCE),相对于相同条件下在裸玻碳电极表面制备的PB修饰电极,该电极表现出更优良的电化学性质。通过使用不同性质的表面活性剂对MWNTs进行分散,制备了系列MWNTs基PB修饰电极,并研究了表面活性剂对PB复合修饰电极性能的影响。实验结果表明,表面活性剂的加入提高了PB/MWNTs/GCE基修饰电极对过氧化氢的检测范围。  相似文献   

10.
在pH 5.5的0.1mol/L(CH2)6N4-HCl底液中可获得铟(Ⅲ)-荧光镓体系灵敏的络合吸附波。测定铟的线性范围为1.0×10-7~1.0×10-5mol/L,检测限达8×10-8mol/L, 测得电活性络合物的组成为铟∶荧光镓=1∶2,条件形成常数β=3.6×1013,表面电极反应速率常数ks1ks2ks3分别为4.4、1.74、10.8s-1,并研究了电极反应机理。  相似文献   

11.
采用滴涂法制备了多壁碳纳米管修饰电极(MWNTs/GCE),并运用线性扫描伏安法(LSV)研究了盐酸环丙沙星(CPLX)的电化学行为,探讨并确定了CPLX的最佳检测条件.结果表明:pH=5.5的Na_2HPO_4~NaH_2PO_4缓冲体系中,CPLX在该修饰电极上出现一个不可逆的氧化峰,且在2.0×10~(-6)~5.0×10~(-5)mol/L浓度范围内,CPLX氧化峰电流与其浓度呈现良好的线性关系,线性回归方程为Ip(μA)=0.98806×C(μmol/L)+13.76967,相关系数为R=0.99363.检测下限为1.0×10~(-6)mol/L,平行测定的相对误差(RSD)小于4.56%(n=10),样品平均回收率分别为97.40%、96.99%和107.93%.  相似文献   

12.
首先在玻碳电极(GCE)表面电聚合硫堇,得到聚硫堇修饰玻碳电极(PTh/GCE),然后在PTh/GCE上依次电沉积普鲁士蓝-金纳米复合物(PB-Au)和金纳米粒子(GNPs),最后利用滴涂法固定双链DNA,制备一种基于双链DNA的苯酚传感器(dsDNA/GNPs/PB-Au/PTh/GCE).利用循环伏安法和电化学交流阻抗技术对传感器的制备过程进行了表征,研究了亚甲基蓝(MB)和[Fe(CN)_6](3-/4-)的协同指示剂作用,测试了苯酚传感器的响应性能,考查了传感器的一致性和抗干扰能力,最后对某制药厂的含酚废水进行了检测.结果表明,在1×10(3-/4-)的协同指示剂作用,测试了苯酚传感器的响应性能,考查了传感器的一致性和抗干扰能力,最后对某制药厂的含酚废水进行了检测.结果表明,在1×10(-3)(-3)1×101×10(-8)mol/L范围内,MB峰电流与苯酚浓度呈现良好的线性关系,相关系数为0.995 8,检出限为2.36×10(-8)mol/L范围内,MB峰电流与苯酚浓度呈现良好的线性关系,相关系数为0.995 8,检出限为2.36×10(-13)mol/L,该传感器一致性好,并具有一定的抗干扰能力,在环境监测领域具有广阔的应用前景.  相似文献   

13.
碳纳米管修饰玻碳电极测定诺氟沙星的研究   总被引:1,自引:0,他引:1  
用滴涂法制备了一种多壁碳纳米管-Nation膜修饰玻碳电极,研究了诺氟沙星在修饰电极上的电化学行为.实验结果表明,修饰电极对诺氟沙星具有良好的电催化作用.在最优条件下,利用微分脉冲伏安法对诺氟沙星的含量进行了测定,氧化峰电流与诺氟沙星的浓度在1.0×10-8~1.0×10-5mol/L范围内呈良好的线性关系(R=0.9979),信噪比等于3时,检出限为5.0×10-8mol/L该修饰电极对诺氟沙星有良好的选择性和灵敏度,可用于实际样品诺氟沙星含量的测定.  相似文献   

14.
在玻碳电极(GCE)表面依次电聚合硫堇膜(PTh)、电沉积金-普鲁士蓝复合纳米粒子(PB-Au)和金纳米粒子(GN),利用GN比表面积大和生物相容性好的特性,进而固定单链DNA(ssDNA),制备一种电流型DNA传感器(GCE/PTh/PB-Au/GN/ssDNA).利用电化学交流阻抗技术(EIS)和循环伏安法(CV)对电极的修饰过程进行表征,以亚甲基蓝(MB)为杂交指示剂,利用微分脉冲伏安法(DPV)对DNA进行检测.结果表明,所制备的DNA传感器可以对DNA进行灵敏检测,在1.0×10-14~1.0×10-6 mg/L范围内,DPV的峰电流与DNA质量浓度呈良好线性关系,工作曲线斜率为-13.4 μA/decade,相关系数为0.994,检测下限为1.0×10-14 mg/L.所制备的传感器灵敏准确,不仅可用于基因检测,而且对重金属离子及其他有机污染物的检测也有重要研究价值.  相似文献   

15.
制备了石墨烯-双壁碳纳米管/酸性黄9修饰玻碳电极(DG/AY/GCE),在浓度为0.1mol/L、pH为4.0的磷酸缓冲溶液中,探讨了鸟嘌呤(Guanine,GA)和尿酸(Uric acid,UA)在该修饰电极上的电化学行为。结果表明:GA和UA在该修饰电极上氧化电流可得到明显增强,过电位得以降低。利用计时电流法测定GA和UA,与GA和UA氧化电流呈线性关系的浓度范围分别为2.0×10-9~6.8×10-5 mol/L和5.0×10-9~9.5×10-5 mol/L,检测限(s/n=3)分别为6.67×10-10mol/L和1.67×10-9mol/L。该修饰电极已经成功应用于人类尿液中GA和UA的含量分析,结果令人满意。  相似文献   

16.
用循环伏安法研究了儿茶素在玻碳电极(GCE)和多壁碳纳米管修饰玻碳电极(MWCNT/GCE)上的电化学行为,探讨了电极反应机理。结果表明:MWCNT/GCE对儿茶素具有显著的电催化作用,儿茶素在MWCNT/GCE上的氧化还原峰电位差比在GCE上明显减小,且峰电流显著增加。电极反应为2电子、2质子转移的准可逆反应过程。  相似文献   

17.
基于多壁碳纳米管膜修饰玻碳电极建立了一种直接测定吲哚-3-丁酸的电分析方法。考察了吲哚-3-丁酸在多壁碳纳米管膜电极上的伏安行为,发现它在0.73 V(vs.SCE)处有一个灵敏的氧化峰。与裸玻碳电极相比,多壁碳纳米管膜电极显著提高了吲哚-3-丁酸的氧化峰电流。在优化后的实验条件下,氧化峰电流与吲哚-3-丁酸的浓度在9.0×10-7~5.0×10-5mol/L之间有很好的线性关系,开路富集3 min后,其检出限为5.0×10-8mol/L。在用于测定模拟样品中吲哚-3-丁酸的含量时,检测限低、分析速度快、重现性好。  相似文献   

18.
根据Hummers方法制备了石墨烯(GR),通过在石墨烯修饰玻碳电极(GR/GCE)表面电沉积纳米金粒子(Au NPs)制备了纳米金/石墨烯复合物修饰电极(Au NPs/GR/GCE),采用扫描电镜表征了电极形貌;并用循环伏安法研究了抗坏血酸(AA)在此修饰电极上的电化学行为,在p H=4.0的磷酸氢二钠-柠檬酸缓冲溶液中,AA在复合物修饰电极上产生一灵敏的氧化峰,氧化峰电流显著高于裸玻碳电极(GCE)和石墨烯修饰玻碳电极(GR/GCE);在优化实验条件下,建立了循环伏安法测定AA的方法,氧化峰电流与AA的浓度在7500μmol/L和1500μmol/L和130 mmol/L范围内呈良好的线性,检出限为5μmol/L(信噪比=3);用该方法测定维生素C片中AA的含量,回收率在97.69%30 mmol/L范围内呈良好的线性,检出限为5μmol/L(信噪比=3);用该方法测定维生素C片中AA的含量,回收率在97.69%103.5%之间.  相似文献   

19.
利用毛细管电泳电化学发光(CE-ECL)法检测了尿样中的香草扁桃酸(VMA)和高香草酸(HVA),得到了最佳的分离检测条件:50 mmol/L磷酸盐缓冲溶液(pH 8.2);分离电压16 kV;检测电势1.2 V(相对于饱和甘汞电极).在最佳条件下,VMA和HVA的浓度检测限(S/N=3)分别为5.0×10-7 mol/L和6.1×10-7 mol/L,线性回归系数分别为0.999 3和0.997 9.并以此方法将尿液中的VMA和HVA在10 min内有效地分离检测,不受其他干扰,得到加标回收率分别为98%和99%,取得了满意的结果.  相似文献   

20.
制备了聚苯乙烯磺酸钠(PSS)/单壁碳纳米管(SWNTs)膜修饰玻碳电极,在磷酸盐缓冲溶液(PBS)中,研究了抗坏血酸(AA)、尿酸(UA)、多巴胺(DA)在该修饰电极上的电化学行为.结果表明:AA、UA、DA在该修饰电极上的氧化信号能得到明显地区分,峰电位差值DA-AA为158mV,DA-UA为118 mV,AA-UA为276 mV.利用示差脉冲伏安法对体系中抗坏血酸(AA)、尿酸(UA)、多巴胺(DA)可以同时进行检测.其线性响应范围分别为1.0×10-3-1.0×10-4mol/L(AA);7.4×10-7-7.0×10-6mol/L(DA);1.0×10-6-1.0×10-5mol/L(UA).该方法用于针剂中多巴胺的检测,回收率在102.0-106.0%之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号