首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
研究了三阶非线性系统u′″(t)=f(t,u(t)),t∈[t_1,t_3]在满足边值条件u(t_1)=u′(t_2)=0,γu(t_3)+δu″(t_3)=0下正解的存在性,其中u=(u_1,…,u_n),γ=diag[γ_1,…,γ_n],δ=diag[δ_1,…,δ_n].运用Leray-Schauder型非线性抉择和Krasnosel'skii不动点定理,建立了此问题单个和两个正解的存在性结果,并举例说明了所得结论的有效性.  相似文献   

2.
讨论下述带参数的三阶m-点边值问题u(t)+f(t,u(t),u′(t))=0,t∈(0,1),u(0)=u′(0)=0,u′(1)-∑m-2i=1aiu′(ξi)=λ,其中ai≥0(i=1,2,…,m-2),0ξ1ξ2…ξm-21,∑m-2i=1aiξi1,λ≥0为参数。当f满足超线性或次线性条件时,对适当的λ≥0,获得了上述问题单调正解的存在性与不存在性。所用主要工具是Guo-Krasnoselskii不动点定理。  相似文献   

3.
本文研究了如下三阶微分方程的无穷多点边值问题{u'+λa(t)f(u)=0,t∈(0,1),u(0)=βu′(0),u(1)=∑∞i=α1u(ξi),u′(1)=0正解的存在性,其中参数λ0,ξi∈(0,1),αi∈(0,∞],且满足∑∞αi i=1 1,0∞∑αiξi(2-ξi)1.a(t)∈C([0,1],[0,∞)),f∈C([0,∞),[0,∞)),运用锥拉伸与压缩不动点定理,在f满足超线性和次线性的情况下,本文不仅得到了该边值问题正解的存在性,同时还得到了使得问题有解的特征值λ的取值范围.  相似文献   

4.
利用锥上的不动点定理讨论多点边值问题u" λf(t,u)=0,t∈(0,1),u'(0)=0,u(1)=m-2∑i=1aiu(ξi)正解的存在性,其中:f(t,u)≥-M,而M>0;λ>0,ai≥0,i=1,2,…,m-2,0<ξ1<ξ2<…<ξm-2<1:特别的,不要求f满足超线性或次线性条件.  相似文献   

5.
讨论边值问题Lu:=u (t)=f(t,u(t)),u(0)=u′(η)=u″(1)=0,0≤t≤1,12≤η<1的正解的存在性.设λ1为Lu=λu在相应边值条件下的第一特征值,f(t,u)≥0在[0,1]×[0,∞)上连续,f(0,0)=0,在超线性和次线性条件下,得到边值问题正解存在的一个新结果.  相似文献   

6.
研究了非线性三阶周期边值问题u(t)+ρ3u(t)=f(t,u(t)), 0相似文献   

7.
考察了非线性方程m点边值问题u″(t) a(t)u′(t) b(t)u(t) f(t,u)=0,0≤t≤1,u(0)=0,u(1)=∑m-2i=1αiu(ξi),的正解的存在性与多解性.设a∈C[0,1],b∈C([0,1],(-∞,0));设1(t)为线性方程边值问题u″(t) a(t)u′(t) b(t)u(t)=0,0≤t≤1,u(0)=0,u(1)=1,的唯一正解.其中ξi∈(0,1),αi∈(0, ∞)为满足∑m-2i=1αi1(ξi)<1的常数,i∈{1,2,…,m-2}.通过考察f在有界集上的性质,运用Krasnosel'skii锥拉伸与锥压缩型不动点定理及格林函数的性质,获得了其正解的存在性与多解性,推广和改进了已有的相关结果.  相似文献   

8.
本文研究了非线性二阶Neumann边值问题{-un Mu=λf(t,u),0相似文献   

9.
利用Leray-Schauder度理论和Wirtinger-type不等式,给出了非线性n阶常微分方程u(n)=f(t,u,u′,…,u(n-1))-e(t),0相似文献   

10.
本文研究了一类含积分边值条件的非线性分数阶微分方程耦合系统{~cD~αu(t)+f(t,u(t),v(t))=0,~cD~αv(t)+f(t,u(βt),v(βt))=0,u(0)=u′(0)=…=u~(n-2)(0)=u~(n)(0)=0,u(1)=λ∫01u(s)ds,v(0)=v′(0)=…=v~(n-2)(0)=v~(n)(0)=0,v(1)=λ∫01v(s)ds正解的唯一性.利用广义耦合不动点定理,本文得到了该边值问题正解的唯一性的充分条件,并在举例说明了定理的有效性.  相似文献   

11.
本文主要研究一类Riemann-Liouville分数阶微分方程多点边值问题:{D_(0+)~αu(t)+f(t,u(t),u′(t))=0,u(0)=u′(0)=u″(0)=…=u~(n-2)(0)=0,u′(1)=∑m-2i=1β_iu′(ξ_i),其中0≤t≤1,n-1α≤n,n≥2,0β_i1,0ξ_i1,i=1,2,…,m-2。a_i0,∑m-2i=1β_iξ_i~(α-2)1。先利用Schauder不动点定理得到边值问题解的存在性,再由Leggett-Williams不动点定理证明边值问题至少存在3个正解的存在性,所得结论更为丰富,推广了已有文献的结果,最后举例子说明本文结论的正确性。  相似文献   

12.
本文研究了二阶和四阶常微分方程耦合系统u~((4))(t)=λf(t,v(t)),t∈(0,1),-v″(t)=λg(t,u(t)),t∈(0,1),u(0)=u(1)=u″(0)=u″(1),v(0)=v(1)正解的存在性,其中λ0为参数,f,g∈C([0,1]×[0,∞),R).当f,g满足适当的条件时,本文证明了λ充分大时方程一个正解的存在性.主要结果的证明基于Schauder不动点定理.  相似文献   

13.
本文研究了非线性二阶常微分方程周期边值问题{-u″+μ2 u=λg(t)f(u),0t2π,u(0)=u(2π),u′(0)=u′(2π)正解的存在性,其中μ0为常数,λ是一个正参数,g:[0,2π]→[0,∞),f:[0,α)→[0,∞)为连续函数,α0为常数.主要结果的证明基于锥拉伸与压缩不动点定理.  相似文献   

14.
用Leray-Schauder不动点定理,讨论完全n阶边值问题:{-u~((n))(t)=f(t,u(t),u′(t),…,u~((n-1))(t)), t∈[0,1],u~((i))(0)=0, i=0,1,2,…,n-2,u~((n-1))(1)=0烅烄烆解的存在性,其中f:[0,1]×R~n→R为连续函数.在一个允许f(t,x_0,x_1,…,x_(n-1))关于x_i(i=0,1,2,…,n-1)超线性增长的不等式条件及f(t,x_0,x_1,…,x_(n-1))关于x_(n-1)满足Nagumo型增长的条件下,得到了该问题解的存在性.  相似文献   

15.
本文研究了非线性四阶三点边值问题u(4)(t)=λa(t)f(t,u(t)),t∈[0,1],u(0)=u′(η)=u″(1)=u″′(0)=0正解的存在性,其中λ0是正参数,η∈[12,1)为常数.利用锥上的不动点定理,本文获得了该问题的一个正解的存在性,并在关于非线性项f和a的假设条件下给出了问题存在正解的λ的取值范围.值得注意的是这里的a(t)是奇异函数.  相似文献   

16.
本文利用不动点指数理论证明了如下非线性二阶Robin问题{u″(t)-k~2u(t)+λf(u(t))=0,t∈(0,1),k≠0,u'(0)=0,u(1)=0多个正解的存在性,其中f:[0,∞)→[0,∞)为连续函数且有多个零点,λ0为参数.  相似文献   

17.
运用锥上不动点理论研究二阶离散周期边值问题Δ2u(t-1)+a(t)u(t)=λg(t)f(u(t))+c(t),t∈[1,T]Z,u(0)=u(T),Δu(0)=Δu(T).得到了在非线性项f有奇性和无奇性时正解的存在性、多解性和不存在性.  相似文献   

18.
讨论了奇异三阶微分方程m点边值问题{u(t)+h(t)f(u)=0,u(0)=u’(0)=0,u’(1)=∑m-2i=1βiu’(ηi),其中,ηi∈(0,1),0<η1<η2<…<ηm-2<1,βi∈[0,∞)且∑m-2i=1βiηi<1.通过与一个线性算子相关的第一特征值的讨论,运用不动点指数定理,得到了正解存在的结果,其中允许h(t)在t=0和t=1处奇异.  相似文献   

19.
研究三阶差分系统边值问题Δ3ui(k) λhi(k)fi(u1(k),u2(k),…,un(k))=0,k∈[0,T],ui(0)=ui(1)=ui(T 3)=0,i=1,2,…,n.若令f0=sum from i=1 to n lim‖u‖→0 fi(u)/‖u‖且f∞=sum from i=1 to n lim‖u‖→∞ fi(u)/‖u‖,则在f0=0且f∞=∞,或者f0=∞且f∞=0的情况下,运用不动点指数理论证明对于所有的λ>0,上述系统存在一个正解.  相似文献   

20.
研究了一类带有积分边界条件非线性Caputo型分数阶微分方程耦合系统{~cD~αu(t)+f(t,ν(t))=0,0t1,~cD~βν(t)+g(t,u(t))=0,0t1,u(0)=u′(0)=…=u~((n-2))(0)=u~((n))(0)=0,u(1)=λ∫01u(s)ds,ν(0)=ν′(0)=…=ν(n-2)(0)=ν(n)(0)=0,ν(1)=λ∫01v(s)ds解的存在性和唯一性问题.利用Schauder不动点定理和Banach压缩映射原理,得到了该耦合系统解的存在性和唯一性的充分条件,并举例说明定理的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号