首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
本文运用初等数论简单同余法、分解因子法及反证法等,得到丢番图方程2py2=2x3+3x2+x,(p为素数)无正整数解的情况.(1)当p≡1(mod 8),p≡5(mod 8),p≡7(mod 8)时,则方程无正整数解;(2)当p≡3(mod 8)时,Un+Vnp(1/2)=(x0+y0p(1/2))n.其中x0,y0是Pell方程x2-py2=1的基本解,当n≡0(mod 2)时,则方程无整数解;当n≡1(mod 2)时,若2|x0,则方程无整数解.特别是p≡3(mod 8)且p100时,2|x0,则方程无整数解.  相似文献   

2.
利用Pell方程及同余的性质给出了Diophantine方程 G:kx4-(2k+4)x2y2+ky4=-4仅有整数解(|x|,|y|)=(1,1)的充分条件。证明了:1)若k 12(mod16),则Diophantine方程G 仅有整数解(|x|,|y|)=(1,1);2)若k=4m,m≡3(mod4),且2s或s≡0(mod4),t≡3,5(mod8)或s≡2(mod4),t≡1,7(mod8),则Diophantine方程G 仅有整数解(|x|,|y|)=(1,1),这里s+t m 是Pell方程x2-my2=1的基本解。
  相似文献   

3.
利用Pell方程及同余的性质给出了Diophantine方程G:kx4-(2k+4)x2y2+ky4=-4仅有整数解(|x|,|y|)=(1,1)的充分条件。证明了:1)若k≠12(mod 16),则Diophantine方程G仅有整数解(|x|,|y|)=(1,1);2)若k=4m,m≡3(mod4),且2︱s或s≡0(mod 4),t≡3,5(mod 8)或s≡2(mod 4),t≡1,7(mod 8),则Diophantine方程G仅有整数解(|x|,|y|)=(1,1),这里s+t m1/2是Pell方程x2-my2=1的基本解。  相似文献   

4.
主要利用同余式、Pell方程的解的性质、递归序列、平方剩余等理论得出了如下结果:(1)p≡q≡1(mod 6)为奇素数,(p/q)=-1,pq≡19(mod 24),或p≡1(mod 24),q≡13(mod 24)时,Diophantine方程x~3-1=6pqy~2仅有平凡解(x,y)=(1,0);(2)p≡q≡1(mod6)为奇素数,(p/q)=-1,且pq≡7(mod 24),或p≡1(mod 24),q≡13(mod2 4)时,Diophantine方程x~3+1=6pqy~2仅有平凡解(x,y)=(-1,0).  相似文献   

5.
关于不定方程x^3-8=21y^2   总被引:1,自引:0,他引:1  
利用递归数列与同余式的有关性质和结论,给出了不定方程x3-8=21y2仅有(x,y)=(2,0)和满足y2=a2b2,x=3a2+2且a≡1(mod2),b2≡1(mod8)的整数解.  相似文献   

6.
关于丢番图方程x6±y6=pDz2   总被引:1,自引:0,他引:1  
设p>3是素数,证明了丢番图方程x6±y6=6pz2,x6+y6=3pz2和x6-y6=2pz2均无正整数解;方程x6+y6=pz2和x6+y6=2pz2在p1(mod24)时均无正整数解;方程x6-y6=pz2在p1,7,19(mod24)时无正整数解;方程x6-y6=3pz2在p(≡/)1,19(mod24)时无正整数解;并且获得了以上方程在p≡1,7,19(mod24)时的全部正整数解通解公式, 从而从正面支持了广义Fermat猜想和Tijdeman猜想.  相似文献   

7.
设p,q,r为奇素数,p≡13 mod 24,q≡19 mod 24,(p/q)=-1.利用同余式、平方剩余、递归序列、Legendre符号的性质、Pell方程解的性质等证明了:(A)若r≡5 mod 12,则方程G:x3-1=2pqry2仅有平凡解(x,y)=(1,0);若r≡11 mod 12,则方程G最多有2组正整数解.(B)若r≡11 mod 12,则方程H:x3+1=2pqry2仅有平凡解(x,y)=(-1,0);若r≡5 mod 12且(pq/r)=-1,则方程H最多有2组正整数解.  相似文献   

8.
利用将多项式分项相除的分圆多项式系数的简洁算法,证明了当33qr(x)的系数中.当r-q≡0(mod3)时,F3qr(x)的系数中没有-2出现,当r+q≡0(mod3)时;F3qr(x)的系数中没有2出现.    相似文献   

9.
设pi≡1(mod 6)(1≤i≤s)为奇素数.关于不定方程x3-1=3s∏i=1piy2(s≥2)的初等解法至今仍未解决.主要利用Pell方程的解的性质、递归序列、同余式、平方剩余等证明了p≡q≡1(mod 6)为奇素数,pq≡7(mod 12),(p/q)=1时,不定方程x3-1=3pqy2仅有平凡解(x,y)=(1,0).  相似文献   

10.
设D1,D2是无平方因子正奇数.证明了:当D2 ±1(mod 8)或D2 1,3(mod 8),则方程组x2-D1y2=2s2和x2-D2y2=-2t2没有本原整数解(x,y,s,t).  相似文献   

11.
设a,b是不同的正整数.运用初等数论方法证明了:当a≡0(mod 2)且b≡3(mod 8)时,方程(an-1)(bn-1)=x2没有适合n>1的正整数解(x,n).  相似文献   

12.
设a,b,C是两两互素的正整数,min(a,b,C)>1.论文证明了:当b(?)1(mod 8),c(?)5(mod 8)且c是素数方幂时,如果ax by=cz有正整数解(x,y,z)=(2,2,r),其中r是大于1的奇数,则该方程的例外解(x,y,z)都满足x=2以及y(?)z(?)1(mod 2).  相似文献   

13.
设p和q是适合p+2=q的孪生素数.文章根据二元四次Diophantine方程和联立Pell方程组的解数上界证明了:当p≡1(mod 4)时,椭圆曲线E+:y2=x(x+p)(x+q)没有非平凡整数点(x,y);当p3且p≡3(mod 4)时,E+至多有3对非平凡整数点.  相似文献   

14.
设p、q为奇素数,p≡13(mod24),q≡19(mod24),Legendre符号值p(q)=-1.利用递归序列、Legendre符号的性质、同余的性质以及Pell方程的解的性质等,证明了:(i)若p()11=pq(11)=-1且n■3(mod4),则不定方程x3-1331=2pqy2至多有2组正整数解;(ii)若pq(11)=-1且n■1(mod4),则不定方程x3+1331=2pqy2仅有平凡解(x,y)=(-11,0);推进了此类不定方程的研究.  相似文献   

15.
设p>3是素数,证明了丢番图方程在x6+y6=pz2在p(≠)1(mod 24)时无正整数解,方程x6-y6=pz2在p(≠)1,7,19(mod 24)时无正整数解;并且获得了以上方程在p≡1,7,19(mod 24)时有正整数解的必要条件及其部分计算结果,从而从正面支持了广义Fermat猜想和Tijdeman猜想.  相似文献   

16.
设q为奇素数且q≠7.利用同余式、平方剩余、Pell方程解的性质、递归序列证明了:1)当q≡11,23,29,53,65,71,95,107,113,137,149,155(mod 168)时,不定方程x3+1=7qy2仅有整数解(x,y)=(-1,0);2)当q≡11,23,29,53,71,95,107,149,155,167(mod 168)时,不定方程x3-1=7qy2仅有整数解(x,y)=(1,0).  相似文献   

17.
应用代数数论以及同余法等初等方法讨论不定方程x~2+4~n=y~(11)的整数解情况,证明了不定方程x~2+4~n=y~(11)在x为奇数,n≥1时无整数解;不定方程x~2+4~n=y~(11)在n∈{1,8,9,10}时均无整数解;不定方程x~2+4~n=y~(11)有整数解的充要条件是n≡0(mod 11)或n≡5(mod 11),且当n≡0(mod 11)时,其整数解为(x,y)=(0,4~m);当n≡5(mod 11)时,其整数解为(x,y)=(±2~(11m+5),22m+1),这里的m为非负整数,验证了k=11时猜想1成立。  相似文献   

18.
讨论了形如x2-5(5n+2)y2=-1(n∈Z+,n≡-1(mod4),5n+2为素数)与x2-5(5n-2)y2=-1(n∈Z+,n≡-1(mod4),5n-2为素数)型Pell方程有正整数解的两个结论.  相似文献   

19.
设p为素数 ,证明了丢番图方程x(x+ 1) =Dy3在D=p 1(mod 3)时仅有解 (p ,x ,y) =(2 ,1,1) ,(2 ,- 2 ,1) ,(17,5 831,12 6 ) ,(17,- 5 832 ,12 6 ) ;在D =2p ,p≡ 2 ,3,5 (mod 9)时仅有解 (x ,y ,p) =(2 ,1,3) ,(- 3,1,3) ;在D =4p ,p=5或p≡ 2 ,3(mod 9)时仅有解 (p ,x ,y) =(3 ,3,1) ,(3,- 4,1) ,(5 ,4,1) ,(5 ,- 5 ,1) ,(5 ,6 85 9,133) ,(5 ,- 6 86 0 ,133)。  相似文献   

20.
设P=3i∏pi(s≥2),其中pi=1(mod 6)(i=1,2,…,s)为奇素数.关于丢番图方程x3+1=Py2的初等解法至今仍未解决.主要利用同余式、平方剩余、Pell方程的解的性质以及递归序列证明了:当p≡q≡1(mod6)为奇素数,pq≡7(mod 24),(p/q)=-1时,丢番图方程x3+1=3pqy2仅有平凡解(x,y)=(-1,0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号