首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
功能性聚N-乙烯基乙酰胺接枝聚苯乙烯微球的制备   总被引:1,自引:0,他引:1  
采用链转移自由基聚合和端基置换反应的方法,合成了苯乙烯单封端聚N-乙烯基乙酰胺(PNVA)大分子单体,以此大分子单体为反应性分散稳定剂,使之与苯乙烯在乙醇/水的混合介质中进行分散共聚反应,制得表面PNVA接枝聚苯乙烯(PNVA-g-PSt)聚合物微球.利用凝胶渗透色谱、激光光散射仪和电子显微镜等对聚合物的相对分子质量、微球动力学直径及其形态进行了表征.结果表明:PNVA大分子单体浓度、苯乙烯浓度、引发剂浓度和聚合温度对微球粒径有较大的影响;溶剂组成对聚合物微球的形态有明显的影响.  相似文献   

2.
报告一个简便、有效的方法在溶液中构筑聚异丙基丙烯酰胺(PNIPAM)包裹聚苯乙烯(PS)的核壳结构和PNIPAM空心球.方法的要点是利用憎水相互作用,将憎水性的偶氮异丁腈引发剂集中在PS球周围,让分散在水相中的单体异丙基丙烯酰胺和交联剂甲叉双丙烯酰胺在PS球表面发生聚合.控制反应温度,利用聚异丙基丙烯酰胺聚合物在水溶液中的独特的热行为,即当温度升高到32 ℃以上时会突然发生亲水到憎水的转变而产生沉淀粘附在PS球表面上形成核壳结构.用氯仿溶解聚苯乙烯核制备了聚异丙基丙烯酰胺空心球.  相似文献   

3.
以N-异丙基丙烯酰胺(NIPAM)、苯乙烯(St)为单体采用无皂乳液聚合法制备P(NIPAM-co-St)微球。在制备过程中,综合考察了反应时间、引发剂用量、相比、搅拌速度4个因素对P(NIPAM-co-St)微球的粒径的影响。实验结果表明,增加引发剂量、延长反应时间对减小微球粒径的影响最大,而增加相比则起着相反的作用;当搅拌速度在600 r/min,引发剂量为4%,相比为2.5%,反应时间为12 h的单分散性都比较好。  相似文献   

4.
采用反相悬浮聚合法合成了包埋有Cd2+的中性聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶和阴离子型聚(N-异丙基丙烯酰胺-co-甲基丙烯酸)(P(NIPAM-co-MAA))微凝胶.以这2种微凝胶为微反应器,通过外源导入法通入H2S气体,引发CdS沉积反应,制得具有不同表面形貌的有机-无机复合微球.扫描电镜观察表明:微球表面图案结构形貌与模板的性质有关,微球的尺寸在50 μm左右,且具有类核-壳结构.X射线衍射分析表明复合微球中的CdS呈晶态,属立方晶形.微球具有CdS荧光特征,模板本性对微球荧光有一定影响.  相似文献   

5.
大分子RAFT试剂存在下的分散聚合结合了非均相条件下的可控/活性自由基聚合和嵌段共聚物的自组装的优点,已成为高分子合成领域中的研究热点.本文利用RAFT聚合方法制备出聚N,N-二甲基丙烯酰胺(PDMA),再将PDMA进一步用作大分子RAFT试剂,研究其用于分散聚合可控制备聚苯乙烯(PSt)微球.结果表明,增大PDMA相对分子质量和降低PDMA用量,可导致粒径增大.在乙醇与水混合溶剂中水含量低于50%时,可通过调控PDMA获得单分散性良好的稳定的聚合物颗粒,其粒径能够在200~500,nm之间进行选择.对分散聚合过程中粒子粒径、单体苯乙烯转化率以及聚合物分子质量的变化的研究表明,大分子RAFT试剂PDMA存在下的苯乙烯分散聚合存在均相反应、成核和颗粒增长3个不同的聚合阶段,反应过程中嵌段聚合物PDMA-PSt中苯乙烯链段不断增长,最后得到的产物是PDMA-PSt嵌段聚合物颗粒.  相似文献   

6.
探索聚苯乙烯微球的添加对于分子印迹膜对溶菌酶(Lysozyme, Lyz)吸附性能的影响.以溶菌酶为模板分子,丙烯酰胺、N,N'-亚甲基双丙烯酰胺为功能单体、聚苯乙烯(Polystyrene,PS)微球为致孔剂,制备聚苯乙烯为致孔剂的分子印迹聚合物膜(PS-MIP).PS-MIP的吸附平衡时间为30 min,短于未添加聚苯乙烯微球的分子印迹聚合物膜(MIP);PS-MIP与MIP对于Lyz的吸附能力均明显好于聚苯乙烯为致孔剂的非分子印迹聚合物膜(PS-NIP)与未添加聚苯乙烯微球的非分子印迹聚合物膜(NIP);PS-MIP对Lyz的选择性要好于MIP,而卵清蛋白和牛血清白蛋白在PS-MIP和MIP上的荧光信号没有差别.实验结果表明,在分子印迹膜聚合过程中添加聚苯乙烯微球,有利于缩短吸附时间,增大溶菌酶的吸附量并提升选择性.  相似文献   

7.
P(NIPAM-DADMAC)微凝胶的合成、表征及药物释放   总被引:1,自引:0,他引:1  
利用乳液聚合法按不同配比 ,合成出N 异丙基丙烯酰胺 (NIPAM )与二烯丙基二甲基氯化铵 (DADMAC)的共聚物———P(NIPAM DADMAC)温敏性微凝胶 ,利用红外光谱仪及核磁共振仪对其进行表征 ,同时利用动态光散射仪测得微凝胶粒子在水中不同温度下的直径 ,从而获得其低临界溶解温度为 31℃ .另外 ,用不同配比的微凝胶在临界温度前后对氟哌酸进行吸附及释放研究 ,结果表明 ,在微凝胶中的少量组分DADMAC以及温度会明显影响氟哌酸的吸附及释放  相似文献   

8.
以甲基丙烯酸-N,N-二甲氨基乙酯和N-异丙基丙烯酰胺为功能单体,采用自由基聚合法合成一系列不同组成的聚(甲基丙烯酸-N,N-二甲氨基乙酯-co-N-异丙基丙烯酰胺)P(DMAEMA-co-NIPAM)共聚物.利用紫外透光率和荧光技术研究了聚合物水溶液的相行为以及聚丙烯酸(PAA)对P(DMAEMA-co-NIPAM)共聚物pH敏感性的影响.结果表明,所合成的P(DMAEMA-co-NIPAM)共聚物其温敏性和pH敏感性相互依赖.在pH值等于4附近时,PAA 的加入对P(DMAEMA-co-NIPAM)的pH敏感性产生较大影响.  相似文献   

9.
以大豆蛋白为天然高分子基材,通过原位聚合法制备了大豆蛋白基聚N-异丙基丙烯酰胺(SPI-PNIPAm)微球.采用透射电镜、粒径仪、红外光谱等手段对微球的形貌、结构进行了表征,并对微球的药物可控释放性能进行了研究.结果表明,SPI-PNIPAm对模型药物罗丹明B具有可控释放性能,释放时间长达15h以上.  相似文献   

10.
基于微流控技术,通过光引发自由基聚合制备了聚(N-异丙基丙烯酰胺-co-甲基丙烯酸)[P(NIPA-co-MAA)]水凝胶微球。用傅里叶变换红外光谱、光学显微镜和扫描电子显微镜对凝胶微球的结构及形态进行了表征,讨论了该微球的温度及pH敏感性。结果表明:制备的凝胶微球具有良好的单分散性,通过调节分散相、连续相的流速及表面活性剂的质量分数可有效控制微球的尺寸;所合成的凝胶微球具有温度和pH敏感性,通过共聚甲基丙烯酸(MAA)单体可以有效地调控凝胶微球的体积相转变温度。  相似文献   

11.
生物温敏性水凝胶的研究   总被引:3,自引:1,他引:2  
采用明胶和N-异丙基丙烯酰胺(NIPAM)为原料,制备了配比不同的明胶/聚N-异丙基丙烯酰胺(Gel/PNIPAM)水凝胶系列,研究了pH值、温度对水凝胶的溶胀度和溶胀速度的影响。结果表明,明胶/PNIPAM水凝胶对pH值、温度有明显的响应性,且随着组分中NIPAM配比的增加,水凝胶的温敏性明显增加;对水凝胶的溶胀动力学研究表明,体系配比对溶胀的影响与最低溶液临界温度(LCST)有关,当温度大于LCST时,溶胀速度及溶胀度随明胶含量的增加而增加,当温度低于LCST且配比为1/1(质量比)时,水凝胶的溶胀速度最大。  相似文献   

12.
采用反相悬浮聚合法合成了聚N-异丙基丙烯酰胺(PNIPAM)高分子微凝胶,以PNIPAM为微反应器,利用四乙氧基正硅烷在氨水介质中的溶胶-凝胶反应,制得了具有表面图案化的核-壳型微米级PNIPAM/SiO2复合微球.并利用扫描电镜、红外光谱仪和热重分析等手段对复合微球进行了形貌和组分表征.  相似文献   

13.
采用分散聚合法以苯乙烯(St)为单体、偶氮二异丁腈(AIBN)为引发剂、聚乙烯吡咯烷酮(PVP)为分散剂、乙醇和水的混合液为分散介质合成了聚苯乙烯微球,再通过硝化反应与还原反应制成了粒径均匀,稳定性好的氨基聚苯乙烯微球.通过扫描电子显微镜、激光粒径分析仪对微球的外观形貌、单分散性分别进行表征,并用电导滴定法测定了微球表面氨基含量.结果表明,所合成的氨基聚苯乙烯微球粒径在2 μm左右,具有良好的单分散性且氨基含量较高.  相似文献   

14.
以偶氮二异丁腈(AIBN)为光引发剂,甲醇为溶剂,聚乙烯吡咯烷酮 (PVP)为稳定剂,通过抽真空取代氮气保护,利用8 W 365nm波长的紫外灯光照,环境温度下引发分散聚合制备聚苯乙烯微球。这种真空状态下的聚合只适合于光聚合,当紫外光照射反应体系时,AIBN将吸收光子使C-N键断裂而形成自由基,进一步引发苯乙烯单体聚合。研究表明引发剂、稳定剂和单体用量以及光强度和反应时间对微球尺寸和单分散性有规律性影响,适当调节这些参数可获得一定尺寸和单分散度的微球,例如溶剂与单体的比值3:1,引发剂与稳定剂的比为3:1,光照时间为24 h,光照强度为(0.71 mW/cm2)时可获得一定尺寸的单分散性较好的微球。这种方法成本低廉、操作简便、具有一定的普适性,可适用于其它聚合物微球和功能化有机-无机复合微球的制备,例如PMMA、PMAA微球及P(MMA-co-MAA)共聚微球等。  相似文献   

15.
通过可逆加成-断裂链转移(RAFT)聚合,制备了大分子RAFT试剂聚丙烯酰胺(PAm-RAFT)和聚丙烯酰胺-b-聚苯乙烯两亲嵌段共聚物(PAm-b-PSt)。分别研究了制备PAm-RAFT和PAm-b-PSt的聚合反应动力学,符合可控自由基聚合特征。利用傅里叶变换红外光谱和核磁共振氢谱证明了RAFT试剂、PAm-RAFT和PAm-b-PSt的分子结构,利用差示扫描量热法表征了PAm-b-PSt的玻璃化转变温度。采用溶剂诱导法使聚合物自组装,利用透射电镜表征了胶束的形貌与尺寸。研究结果表明:含水量的变化会对共聚物的自组装行为产生影响。  相似文献   

16.
磁性聚苯乙烯微球的合成与表征   总被引:3,自引:2,他引:1  
采用化学共沉淀法制备Fe3O4纳米粒子,并用聚乙二醇-6000对其表面改性,然后以苯乙烯(St)为单体,过氧化苯甲酰(BPO)为引发剂,采用分散聚合法,制备粒径小,磁含量高的磁性聚苯乙烯微球.X射线衍射(XRD)研究表明,所制备的Fe3O4粒子为面心立方结构.红外光谱测试(FT-IR)表明微球中存在苯乙烯和Fe3O4纳米粒子.透射电镜(TEM)观察表明,所制备的磁性聚苯乙烯微球的粒径约为100 nm.热重(TG)分析得到磁性聚苯乙烯微球磁性物质质量分数为14.5%.振动样品磁强计(VSM)测试结果表明,磁性聚苯乙烯纳米粒子的比饱和磁化强度为14.4 A·m2/kg,具有超顺磁性.  相似文献   

17.
利用原子转移自由基聚合(ATRP),以端基修饰2-溴-2-甲基丙酰基的聚乙二醇(PEG-Br)引发温敏单体N-异丙基丙烯酰胺(NIPAM)和光活性单体邻硝基苄基丙烯酸酯(NBAE)共聚,制备得到具有光响应特性的温敏嵌段共聚物.动态光散射实验和紫外-可见吸收光谱表明,该聚合物的低临界溶解温度(LCST)可以通过紫外光照(λ≥310nm)进行后调控,在10mmol/L pH 7.4磷酸缓冲液(PBS)中,可获得聚合物LCST达约26℃的调控幅度.该光响应温敏嵌段共聚物具有良好的水溶性,LCST可调控范围广,产物稳定,有望应用于建立新型药物控制释放系统.  相似文献   

18.
一种水溶性温敏共聚高分子的制备及溶液性质研究   总被引:2,自引:0,他引:2  
以N-异丙基丙烯酰胺和N-异丙基甲基丙烯酰胺为共聚单体,合成了一种在水溶液中具有与人体正常体温37℃一致的相转变温度的共聚化合物.利用动态光散射技术研究了这一特殊共聚物在水溶液中高分子链构象行为随温度的变化情况.  相似文献   

19.
采用原子转移自由基聚合(ATRP)方法,首先在聚对苯二甲酸乙二醇酯(PET)径迹-刻蚀膜表面接枝聚合物N-异丙基丙烯酰胺(NIPAM),然后二次接枝甲基丙烯酸羟乙酯(HEMA),最后用具有离子识别功能的5-胺基-1,10-邻菲罗啉(5-N-1,10-Phen)对HEMA进行封端,制备出具有两嵌段聚合物刷结构的离子识别功能膜。通过傅里叶变换全反射红外光谱(ATR FT-IR)、X-射线电子能谱(XPS)、扫描电子显微镜(SEM)以及接触角测试仪等手段对所制备的膜进行了表征,同时考察了所制备功能膜对溶液中Cu2+的吸附能力。结果表明,通过ATRP方法能够将NIPAM和HEMA链段嵌段接枝在PET膜表面形成聚合物刷,采用的邻菲罗啉能够对HEMA进行封端,且所制备的膜对Cu2+具有吸附作用。  相似文献   

20.
采用一种简单和低成本的方法制备单分散二氧化硅包覆聚苯乙烯(PS/SiO2)核壳型纳米复合微球.首先在氨水的醇溶液中,将聚乙烯吡咯烷酮(PVP)通过乳液聚合为聚苯乙烯核心,再在核心表面使正硅酸四乙酯(TEOS)水解缩聚,从而在PS微球表面包裹一层SiO2外壳.研究了氨水的用量对PS/SiO2纳米复合微球尺寸和形态的影响,利用透射电子显微镜(TEM)和扫描电子显微镜(SEM)对样品的超微结构与形貌进行表征,并探讨了其形成机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号