首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
设k和n为非负整数.第二类Stirling数表示将n个元素划分为恰好k个非空集合的个数,记为S(n,k).对任意给定的素数p和正整数n,存在惟一的整数a和m≥0使得n=apm,其中(a,p)=1(a与p互素).称m为n的p-adic赋值,并记vp(n)=m.第二类Stirling数的p-adic赋值是数论和代数拓扑领域的重要问题.本文研究了一些特殊第二类Stirling数S(pn,2tp)的p-adic赋值,其中p为奇素数,t和n为正整数.本文证明当n≥2,2≤2tp(S(pn,2tp))≥n+2-2t,推广了Zhao和Qiu最近的结果.  相似文献   

2.
设Cn(l)=∏k=2nj=0l(k+2j-1),其中n,l为正整数。给出了Cn(l)的p进赋值的公式,推广了现有的关于Cn(1)的结论,并得到了Cn(l)是否为平方数以及是否为幂数的判定条件。作为应用,证明了对于任意的正整数n≥2,Cn(3),Cn(5)均不是平方数。  相似文献   

3.
对于实数x,设d(x)是x的十进制表示中的十分位数。对正整数l和k的形如(n2+ln+k(l,n))~(1/2)=1取值进行研究,用初等方法,完整的讨论了取1,2,…,9时的可能性,及对应的n的范围。  相似文献   

4.
设k,l,m1,m2是正整数,p,q为奇素数且满足pk=2m1-3m2,ql=2m1+3m2.证明了若2■m1,m2≡2(mod 4),z≡0(mod 2),则对任意正整数n>1,丢番图方程■仅有正整数解(x,y,z)=(2,2,2),从而得到Jesmanowicz猜想在该情形下的正确性.  相似文献   

5.
在本文中, 作者主要研究了第二类Stirling数S(n,k)及其差的3-adic赋值. 设m,n为正整数且nm4. 作者证明了ν3(S(3n+1,3m)-S(3n,3m))=n-m+3.  相似文献   

6.
设→Cm表示具有m个顶点的有向圈,n·→Cm表示由仅具有一个公共顶点的n有向圈→Cm组成的有向图.1994年杜之亭,孙惠泉在证明了n·→C2p(n≡0(mod2))是优美图的基础上提出猜想"n·C2p+1(n≡0(mod2))是优美的",之后,很多学者在这方面做了大量的工作,并分别证明了猜想对于P=1,2,3是成立的.本文证明了猜想对于p=4(即有向图n·→C9(n≡0(mod2))也是成立的,并且给出了三种不同的优美标号.猜想对于任意正整数p是否成立,仍然是个公开问题.  相似文献   

7.
设F为区域D上的亚纯函数族,k、m、q是正整数,p(w)=w~q a_(q-1)(z)w~(q-1) … a_1(z)w是多项式,H(f,f,…f~(k))是满足r_H~*>0的微分多项式,a(z)、b(z)、c(z)是D上的解析函数,且a(z)≠b(z),6(z)≠0,c(z)≠0,如果对任意的f∈Ff的零点重数至少为K 1,p(f~(k)) H(ff,…f~(k))=a(z)(?)f(z)=0,p(f~(k)) H(f,f…f~(k))= b(z)(?)f(z)=c(z),则F在D上正规。  相似文献   

8.
设Cm表示具有m个顶点的有向圈,n·Cm表示由仅具有一个公共顶点的n有向圈Cm组成的有向图.1994年杜之亭,孙惠泉在证明了n·C2p(n≡0(mod2))是优美图的基础上提出猜想"n·C2p+1(n≡0(mod2))是优美的",之后,很多学者在这方面做了大量的工作,并分别证明了猜想对于p=1,2,3是成立的.本文证明了猜想对于p=4(即有向图n·C9(n≡0(mod2))也是成立的,并且给出了三种不同的优美标号.猜想对于任意正整数p是否成立,仍然是个公开问题.  相似文献   

9.
对于正整数n,设Q(n)是n的无平方因子部分;设p是适合p≡1(mod 6)的奇素数.运用Petr组的性质证明了:如果方程x3+1=3py2有正整数解(x,y),则p≠Q(3s2-2),p≠Q(12s2+1),且3p≠Q(s2+2),其中s是正整数.  相似文献   

10.
本文用Baker关于对数线性型的佔计,得到如下结论:设E、F为z〔X〕中次数分别为r、s的首一多项式,a,b、k为给定的非零常数,则不定方程 a(E(t))~m-b(F(t))~n=k,t,m,n∈Z,m>1,n>1,mn>4,仅有有限多个正整数解,且这些解可有效计算,同时,我们提出以下猜想:弱型pillai猜想:设r为给定正整数,a,b,k为给定非零整数,则不定方程ax~m+by~(m…2r)=k,x>1,y>1,m>1 仅有有限多组正整数解.  相似文献   

11.
设p是形如6k+1的正素数,运用数论方法及计算机程序,获得了丢番图方程x2-xy+y2=p在p<100000时的满足x<y的全部正整数解(9658组);运用数论方法证明了当p是形如6k+5的正素数时丢番图方程x2-xy+y2=p无正整数解.从而推进了广义Fermat猜想和Tijdeman猜想的研究进展.  相似文献   

12.
研究亚纯函数的惟一性,证明如下结果:设p(z)和q(z)分别为n1和n2次多项式且互素, f(z)和g(z)是两个超越亚纯函数,n≥max{11,2n1 4n2 3}是一个正整数,如果f n(z)f'(z),gn(z)g'(z)分担有理函数p(z)/q(z)CM,则f(z)=c1Q(z)eα(z),g(z)=c2Q-1(z)e-α(z),这里c1,c2是两个常数,Q(z)是一个有理函数,α(z)是一个非常数多项式,满足(c1c2)n 1(Q'(z)/(Q(z) α'(z))2≡-(p(z)/q(z))2;或者f(z)≡tg(z),其中t是满足tn 1=1的常数.  相似文献   

13.
设ψ(n),σ(n)分别是正整数n的Euler函数与约数和函数.证明了,如果n存在素因子p,使p2| n,则ψ(σ(n))/n>-1/2,从而完全解决了Makowski-Schinzel的一个猜想.  相似文献   

14.
设t∈N,n∈Z+,其中N和Z+分别是所有非负整数集合和所有正整数集合,利用欧拉函数φ(n)、广义欧拉函数φ2(n)、Smarandache LCM函数SL(n)和Smarandache函数S(n)的性质以及初等数论的方法,得到了方程tφ(n)+φ2(n)=S(SL(n13))只在t=0、1、2、3、4、5、7、10、13、15时有正整数解n及方程tφ(n)+φ2(n)=S(SL(n18))只在t=0、1、3、6、7、9、14、18、19时有正整数解n,并给出了这两个方程的所有正整数解n。  相似文献   

15.
设p(n)是满足下列条件的最小正整数:对于任意大于或等于p(n)的正整数m,在n个顶点的完全图中有一个m边着色,使得其中的任一条长为4的路P4至少含2种颜色.通过对n个顶点的完全图构造新的边着色,得到了2色P4问题的新的上界:2n-3[log3 n]-12(n大于8), 并且对于大于或等于2的正整数k,给出了p(3k-2)与p(3k-1)以及p(3k)的值为3k-12;p(3k+1)的值为3k+12;p(3k+2)的值为3k+32.所得到的结果推广和改进了近期的相关结果.  相似文献   

16.
设p1,…,pr是不同的奇素数,x1=2k+1,u,v均为正整数.该文证明了当D=2p1…pr(1≤r≤4)时,除开2(4x12-3)(4x12-1)(2x12-1)=Du2或2(2x12-1)=Dv2外,不定方程组x2-k(k+1)y2=1与y2-Dz2=4仅有平凡解(x,y,z)=(±(2k+1),±2,0).  相似文献   

17.
研究了模p的序列(n1!)k … (nl!)k≡λ(modp),其中p是奇素数,k是正整数且1≤k≤p(1-1/loglogp).lk(p)表示最小的正整数使得对任意的整数λ,上述序列均有正整数解.证明了lk(p)=O((logp)3loglogp.k(1 1/loglogp)).  相似文献   

18.
设p为素数,n为任意的正整数,我们定义p的原数函数为最小的正整数m,使得pn|m!即就是SP(n)=min{m∶pn|m!},其中p为素数.本文研究了这一类Smarandache数论函数p次幂原数函数Sp(n)的均值性质,并给出关于|Sp(k(n+1))-Sp(kn)|和|Sp(k(n+1))-Sp(kn)|2的渐近公式.  相似文献   

19.
如果存在正整数p,使有向图G中任一有序顶点对u和v都有长为p的途径,则有向图G称为本原有向图.设Pn(d)是n(n≥3)阶恰有d个顶点带环的本原有向图的集合,LG(k)是本原有向图G的k-公共后继(k-c.c.),2≤k≤n;又设L(n,d,k)=max|LG(k)|G∈Pn(d)|,由此得到了k-公共后继的界:n-[d/2]≤L(n,d,k)≤n-1,1≤d≤n.  相似文献   

20.
本文研究了整函数的唯一性,证明了如下结果:设p(z)为n1多项式,f(z)和g(z)是两个超越亚纯函数,n≥max{6,n1}是一个正整数,如果fn(z)f'(z),gn(z)g'(z)分担多项式p(z)CM,则f(z)=ciecfp(z)dz,g(z)=c2e-cfp(z)dz,这里c1,c2和c是三个常数且满足(c1c2)n 1c2=-1;或者f(z)≡tg(z),其中t是一个常数且满足tn 1=1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号