首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为提高实际应用场景中行人的检测精度,提出使用高分辨率特征提取网络HRNet(High-Resolution Representation Network)并引入Guided Anchoring机制对RetinaNet算法进行改进,维持了特征图在特征提取过程中的高分辨率信息,同时使网络中的锚框自适应生成,提高了算法的检测精度。结果表明:该改进算法在Caltech行人数据集上取得了0.905的平均精度均值(mean average precision,简称mAP),相比于标准的RetinaNet算法提高了6.0%,在每帧图像尺寸为1280×720像素的视频上检测速度达到了19FPS(每秒检测帧数) ,达到了检测精度与检测速度的均衡。  相似文献   

2.
针对当前无人机目标图像检测方法精度较低和检测速度过慢的问题,提出一种结合轻量级网络和改进多尺度结构的目标检测算法。首先采用MobileNetV3轻量级网络替换YOLOv4的主干网络,减少模型复杂度,提升检测速度;其次,引入改进多尺度结构的PANet网络,增强高维图像特征和低维定位特征的流动叠加,提升对小目标的分类和定位精度;最后,利用K means方法对目标锚框进行参数优化,提升检测效率。同时结合公开数据集和自主拍摄方式构建一个新的无人机目标图像数据集Drone dataset,并基于数据增强的方法开展算法性能实验。实验结果表明,该算法的mAP达到了91.58%,FPS达到了55帧/s,参数量为44.39 M仅是YOLOv4算法的1/6,优于主流的SSD、YOLO系列算法和Faster R CNN算法,实现了对多尺度无人机目标的快速检测。  相似文献   

3.
叶涛  赵宗扬  柴兴华  张俊 《科学技术与工程》2021,21(33):14245-14250
针对“黑飞”无人机侵犯公民隐私、危害个人及公共安全,现有的无人机检测算法难以平衡检测速度和精度且对小目标的检测精度较低等不足,本文在YOLOv3的基础上进行改进,提出MS-Net (Multi-Scale Object Detection Network) 对低空中的无人机进行快速高效地检测,为实现后续的防护压制提供依据。针对锚点框,通过 K-means聚类方法得出更准确预测目标区域的位置。在特征提取部分,使用SSP (Spatial Pyramid Pooling) 提取更丰富的特征信息,提升分类精度。在检测部分,提出ESE (Enhanced Sequeeze and Excitation) 通道注意力机制在基本不影响检测速度的同时实现更加精确的多尺度目标检测。实验结果表明:该方法在由无人机、风筝、鸟等组成的数据集上的检测速度为51FPS,平均准确率(mean average precision, mAP)为91.39%,比 YOLOv3 网络提高了6.42%;特别地,在无人机目标上的平均精度(average precision, AP)提升了7.42%。  相似文献   

4.
针对绝缘子检测目标在航拍图像中尺寸变化剧烈的问题,提出一种改进Faster R-CNN的绝缘子检测算法.首先将FPN特征金字塔结构网络与Faster R-CNN算法进行结合,将不同尺度下的特征进行融合;然后,改进最大池化层,提升检测框的坐标精度;针对遮挡现象,采用Soft-NMS算法规避不同目标检测框因重叠而被误删的情况.经过对绝缘子航拍数据集的检测验证,对比原Faster R-CNN网络,本改进网络结构提高了平均准确率(MAP),且可以更有效地识别图像中更小比例的绝缘子目标.  相似文献   

5.
基于改进YOLOv3的交通标志检测   总被引:2,自引:0,他引:2       下载免费PDF全文
针对交通标志检测小目标数量多、定位困难及检测精度低等问题,本文提出一种基于改进YOLOv3的交通标志检测算法.首先,在网络结构中引入空间金字塔池化模块对3个尺度的预测特征图进行分块池化操作,提取出相同维度的输出,解决多尺度预测中可能出现的信息丢失和尺度不统一问题;然后,加入FI模块对3个尺度特征图进行信息融合,将浅层大特征图中包含的小目标信息添加到深层小特征图中,从而提高小目标检测精度.针对交通标志数据集特点,使用基于GIoU改进的TIoU作为边界框损失函数替换MSE函数,使得边界框回归更加准确;最后,通过k-means++算法对TT100K交通标志数据集进行聚类分析,重新生成尺寸更小的候选框.实验结果表明,本文算法与原始YOLOv3算法相比mAP提升11.1%,且检测每张图片耗时仅增加6.6 ms,仍符合实时检测要求.与其他先进算法相比,本文算法具有更好的检测精度和检测速度.  相似文献   

6.
单次多边界框检测器(single shot multibox detector, SSD)算法因其性能优良已被应用于许多场景中,但该算法对小目标物体的检测精度偏低,主要原因是高层的语义信息没有被充分利用。为解决该问题,文章将其基础网络替换为残差网络(residual network, ResNet),同时融合深浅层的特征信息来增强浅层特征图的语义信息,此外还引入注意力模块,保留更多的目标特征信息,抑制无关信息,进一步提升对小目标物体的检测效果。在PASCAL VOC2007数据集上进行实验测试,平均精度均值为80.2%,优于其他SSD改进算法。由于增加了特征融合和注意力模块,所提算法检测速度有所下降,但相比于SSD改进算法,检测速度仍有明显的优势。  相似文献   

7.
针对将YOLOv3通用目标检测算法应用于行人检测时的检测精度低、定位不准确的问题,提出了一种基于YOLOv3的适用于行人体态特征的目标检测算法。在预处理生成先验框部分,将MSCOCO通用数据集改进为MSCOCO中的person子集来生成仅针对行人体态特征的锚框,并将生成先验框的K-means算法改进为K-means++算法以弥补K-means算法选择中心点的随意性。针对特征提取,改进了卷积神经网络(CNN) Darknet-53的结构以使其能够提取到更多与行人尺度有关的特征信息。损失函数中的目标定位部分改进为更加符合行人体态特征的损失函数。实验使用MSCOCO训练集中的person子集训练模型,分别使用MSCOCO测试集的person子集和自制的行人数据集作为测试集验证模型。结果显示,对比YOLOv3的通用目标检测算法,该文改进算法更易于提取行人特征并提供有效反馈,提高了检测精度。  相似文献   

8.
针对深度学习算法检测钢材表面缺陷时,结构信息减少导致检测精度低的问题,提出一种特征融合和级联检测网络的Faster R-CNN钢材表面缺陷检测算法。首先利用主干网络提取特征图,通过融合特征图的方式,达到减少结构信息丢失的目的;进一步将生成的特征图输入RPN网络生成区域建议框;最后利用检测网络对区域建议框进行分类与回归,通过级联2个检测网络,实现精确检测结果的目标。对模型进行对比性实验分析,找出检测精度最优的算法模型。在NEU-DET数据集上对提出的算法进行了检验,主干网络采用VGG-16比采用Resnet-50的检测精度提高了2.40%;通过融合特征,检测精度提高了11.86%;通过检测网络的级联,检测精度提高了2.37%.通过对算法模型的不断改进和优化,检测精度达到了98.29%.与传统的钢材表面检测方法相比,改进算法能够更准确地检测出钢材表面缺陷的种类和位置,提升对钢材表面缺陷的检测精度。  相似文献   

9.
目标检测是遥感图像处理领域的一项重要技术,遥感图像目标种类繁多且存在目标物体难以被检测.提出把YOLOv5算法应用到遥感图像目标检测的方法,首先选择YOLOv5x来构建网络模型,再通过Mosaic数据增强对样本集进行预处理和自适应锚框筛选方法确定锚框大小,然后切片卷积操作得到原始特征图,将原始特征图送入主干网络进行特征融合得到最优权重,最后采用GIOU Loss做边界框的损失函数和非极大值抑制目标框的筛选,对遥感图像进行目标检测.在公开的10类地理空间物体(NWPU-VHR 10)数据集进行了检测实验,以评估所提出模型的目标检测性能.对比实验表明,本文的模型mAP达到了0.9239,与使用相同数据集的模型中的最佳结果进行比较,mAP提升了1.78%,该方法可以提高遥感图像目标检测精度.  相似文献   

10.
在合成孔径雷达图像舰船目标检测中,由于背景复杂多变,传统的基于人工特征的目标检测方法效果较差.基于深度学习中的单阶段目标检测算法RetinaNet,结合合成孔径雷达图像本身特征信息较少的特点,采用了多特征层融合的思想,改进了网络特征提取能力,提出了相适应的损失函数的计算方法.采用SAR图像舰船目标检测数据集(SSDD)对网络进行训练,并通过样本增强和迁移学习的方法提升算法的鲁棒性和收敛速度.通过实验与其他基于深度学习的目标检测算法所得结果进行比较,结果表明本算法具有更高的检测精度.  相似文献   

11.
医药空瓶在生产过程中瓶身表面会产生大量的气泡缺陷,但现有的方法对医药空瓶表面气泡检测存在各种问题,例如对复杂场景变化的鲁棒性不强,抗噪声干扰能力弱等.针对现有医药空瓶表面的气泡缺陷,提出了一种改进的深度学习目标检测算法RetinaNet对瓶身气泡进行检测.对原始RetinaNet算法中的特征金字塔网络结构进行了优化,在特征融合过程中引入了特征增强模块,用来提高网路对图像语义特征的提取,增强网络特征提取能力.为了减少模型的参数数目和计算时间,考虑到空瓶表面气泡均为小目标缺陷,去掉原始特征金字塔网络中用于检测大目标的网络结构,提高了算法检测速度.通过对标准的ResNet50网络进行重新组合,并引进了膨胀卷积模块,扩大特征图感受野,提高了模型检测的精度.通过在注塑空瓶数据集上对本文的方法进行了验证,其准确率为99.72%,漏检率为0.12%,误检率为016%,mAP为99.49%,相比原始的RetinaNet的mAP提高了接近2.4%.  相似文献   

12.
针对输电线路维护过程中的典型缺陷识别问题,为提高无人机(unmanned aerial vehicle, UAV)自主巡检的智能化程度,提出基于改进YOLOv4的无人机输电线关键部件实时检测模型。根据无人机视角下输电线典型目标的特点,结合MobileNet重新设计了一种轻量的特征提取网络来获取更高的特征提取效率,利用空洞模块增强感受野减少小目标的信息损失;在特征融合模块中添加自适应路径融合网络来融合更多的位置信息和语义信息,提高了多尺度目标的检测精度,减少了目标的误报率。采用构建的无人机输电线关键部件数据集来评估提出的模型。结果表明:基于YOLOv4改进的网络能够在无人机机载端实现实时多尺度目标检测,模型的平均准确率可达到92.76%,检测速度可达到32帧/秒,能够满足无人机嵌入式平台上实时检测的需求。  相似文献   

13.
针对SSD目标检测算法运用于自动驾驶领域时,在检测道路上小目标容易发生漏检错检的情况,本文提出一种改进的SSD目标检测算法。本算法首先在SSD模型的主干网络中嵌入感受野增强模块,扩大特征层的感受野,以获取更多小目标的特征信息;然后在主干网络后加入4次U型特征提取结构,构建4个不同层级的特征金字塔,最后合并成一个多层级特征金字塔用于检测。结果表明,该改进SSD模型在KITTI数据集上的检测精度较原始SSD模型提升了6%,检测速度达到了每秒27.9帧。在兼顾检测效率的同时,有效提高了对道路上小目标的检测精度,更适用于自动驾驶领域。  相似文献   

14.
针对目标检测YOLOv4算法在肺结节检测中存在的小目标漏检和肺结节位置失真等问题,设计了一种改进的YOLOv4肺结节检测算法.在原始YOLOv4网络的基础上,将特征融合网络的上采样过程替换为双线性插值法,并采用张量堆叠的方法使顶层的语义信息与底层的位置信息形成更高通道的特征张量.实验结果表明,与原始的YOLOv4算法相比,改进的YOLOv4算法在公开数据集LUAN16上的平均精确度与预测速度分别提高了4.54%和28.1%,可视化结节位置表达更精准.  相似文献   

15.
针对小目标物体检测精度差的问题,同时不以牺牲速度为代价,本文提出了一种基于全局注意力的多级特征融合目标检测算法。算法首先由卷积神经网络生成多尺度的特征图,然后采用多级特征融合的方法,将浅层和深层特征图的语义信息相结合,提高特征图的表达能力,接着引入全局注意力模块,对特征图上下文信息进行建模,并捕获通道之间的依赖关系来选择性地增强重要的通道特征。此外,在多任务损失函数的基础上增加一项额外的惩罚项来平衡正负样本。最后经过分类回归、迭代训练和过滤重复边框得到最终检测模型。对所提算法在PASCAL VOC数据集上进行了训练和测试,结果表明该算法能有效地提升小目标物体检测效果,并较好地平衡了检测精度与速度之间的关系。  相似文献   

16.
针对旋翼无人机通过视觉准确、快速检测其他旋翼无人机存在的问题,提出基于旋转FHOG-LBP动态检测算法。首先,针对旋翼无人机特有的外形和运动状态,通过形成的样本库建立外部结构模型;其次,将方向梯度直方图(HOG)进行傅里叶变换(Fourier),使其具有快速旋转不变性,在局部二进制模式(LBP)上加入角度旋转偏移值,进行串行融合得到旋转FHOG-LBP特征,使用支持向量机递归特征消除算法(SVM-RFE)进行训练,并使用滑动窗口的检测算法对目标进行检测;最后,通过无人机动态目标测试集进行了实验,实验结果表明,提出的动态检测算法比传统方法精度和时效提高。因此,该方法可以解决具有动态变化或旋转变化的目标检测困难的问题。  相似文献   

17.
针对当前智能车辆目标检测时缺乏多传感器目标区域特征融合问题,提出了一种基于多模态信息融合的三维目标检测方法. 利用图像视图、激光雷达点云鸟瞰图作为输入,通过改进AVOD深度学习网络算法,对目标检测进行优化;加入多视角联合损失函数,防止网络图像分支退化. 提出图像与激光雷达点云双视角互投影融合方法,强化数据空间关联,进行特征融合. 实验结果表明,改进后的AVOD-MPF网络在保留AVOD网络对车辆目标检测优势的同时,提高了对小尺度目标的检测精度,实现了特征级和决策级融合的三维目标检测.   相似文献   

18.
针对自动驾驶情景下行人目标检测过程中对于重叠和遮挡目标存在的漏检问题,提出一种改进多尺度网络YOLOv5的行人目标检测算法。首先构建同时考虑通道间关系和特征空间位置信息的多重协调注意力模块,增加网络特征表达能力;然后将原损失函数改进为具有双重惩罚项的切比雪夫距离交并比损失函数,提高检测框的精确度与网络收敛速度;最后在网络结构方面设计瓶颈状DSP1_X和DSP2_X模块减少梯度混淆。实验结果表明,改进后的多尺度网络收敛能力提高,在面对行车中复杂行人目标检测时具有较高的判别精度和实时检测速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号