首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了在不增加功耗的前提下提高低噪声放大器的增益,本文通过引入电流复用技术,并将偏置管兼作放大管,设计出一款全集成高增益低功耗超宽带低噪声放大器。采用TSMC公司的0.18μm CMOS工艺和Cadence软件对本低噪声放大器电路进行前仿真和后仿真。仿真结果表明,在1.5V的电压供电下,整个电路的功耗(power consumption,PD)为11.7mW,在2.8~8.5GHz的频段内,噪声系数(noise figure,NF)为3.05~4.1dB,正向增益(S21)为18.2~19.9dB,输入回波损耗(S11)、输出回波损耗(S22)均小于-10dB,群延迟为130~320ps,在6GHz处,三阶交调点IIP3为-12.16dBm,达到了设计目标。该低噪声放大器具有高增益低功耗的特点,可用于对增益和功耗要求都较高的接收机中。  相似文献   

2.
采用单电源供电模式,设计了一个基于E-PHEMT晶体管ATF-33143的两级低噪声放大器。在本文中采用Agilent公司的ADS对电路进行了匹配并进行了优化,最后通过S参数仿真得到了低噪声放大器的各项参数,在1.805~1.880 GHz频率范围内噪声系数小于0.45 dB,带内增益大于30 dB,输入驻波比小于2.0 dB,输出驻波比小于1.5 dB。仿真结果表明,该设计满足性能指标要求。  相似文献   

3.
一种低功耗CMOS LNA优化设计方法   总被引:1,自引:0,他引:1  
基于SMIC 0.18 CMOS工艺,设计了一个工作频率为5.8 GHz的差分低噪声放大器。针对低功耗电路的设计要求,通过在输入级增加电容实现了限定功耗下的输入和噪声同时匹配。仿真结果表明,设计的低噪声放大器具有良好的综合性能指标。增益为22.47 d B,噪声系数为1.167 d B,输入反射系数(S11)、输出反射系数(S22)、反向隔离度(S12)分别为-24.74 d B、-17.37 d B、-31.52 d B。在1.5 V电源电压下,功耗为17.3 m W。  相似文献   

4.
基于UMC 0.18 μm CMOS 工艺,设计了一款用于全球卫星导航系统(GNSS)的宽带低噪声放大器(LNA). 其中,采用并联反馈电阻噪声抵消结构降低整体电路的噪声,使用电感峰化技术提升工作频带内的增益平坦度,进而优化高频噪声性能. 此外,采用共源共栅结构提高电路的反向隔离度. 仿真结果表明,在电源电压为1.8 V 的条件下,低噪声放大器的-3 dB 带宽为1 GHz,最大增益为15.08 dB,在1-2 GHz 内增益变化范围为±1 dB,噪声系数为2.65-2.82 dB,输入回波损耗和反向传输系数分别小于-13 dB 和-40 dB. 芯片核心面积为740 μm×445 μm.  相似文献   

5.
基于0.18μmCMOS工艺,采用共源共栅源极电感负反馈结构,设计了一个针对蓝牙接收机应用的2.4GHz低噪声放大器(LNA)电路.分析了电路的主要性能,包括阻抗匹配、噪声、增益与线性度等,并提出了相应的优化设计方法.仿真结果表明,该放大器具有良好的性能指标,在5.4mw功耗下功率增益为18.4dB,噪声系数为1.935dB,1dB压缩点为-14dBm.  相似文献   

6.
无线通信对射频接收机的低功率、低成本、小型化要求较高。本文提出了基于 IEEE 802.16协议的低电压接收前端系统和模块的设计方案,给出了三级级联的低噪声放大器和双正交下变频混频器的设计电路。仿真结果显示该放大器在增益、噪声、线性度等指标上均达到要求,双正交下变频混频器镜像抑制度达52 dB以上,对低噪声放大器和混频器级联电路的仿真结果表明,该级联电路能够达到接收机RF前端电路的设计要求。  相似文献   

7.
采用斩波稳定技术设计了一款低噪声CMOS放大器.该放大器用于神经信号的检测和放大,包括调制解调器、rail-to-rail输入放大级、带通滤波器、低通滤波器和振荡器5个模块.其中,rail-to-rail输入放大级提高了电路的输入共模范围,带通滤波器减小了残余失调,整个斩波稳定系统使电路显现低噪声特性.该电路采用TSMC 0.35μm CMOS工艺进行了仿真流片设计,低频等效输入相关噪声谱密度为13.2 nV/sqrt(Hz),开环增益为100 dB,3 dB带宽10 kHz,芯片面积为980μm×450μm.仿真结果显示,基于斩波稳态技术的低噪声放大器可作为一种有效的神经信号检测的前端电路.  相似文献   

8.
低噪声放大器的仿真设计   总被引:3,自引:0,他引:3  
周伟中 《科技资讯》2010,(14):30-31
介绍了一种利用ADS仿真软件设计低噪声放大器的方法。先总体阐述了低噪声放大器的主要技术和性能指标,然后在采用AVAGO公司的ATF-34143晶体管的基础上,根据低噪声放大器的各项指标来同步进行电路的设计、优化和仿真,最后使得低噪声放大器的设计结果达到设计初期的期望值,并成功地完成了低噪声放大器的电路设计。  相似文献   

9.
为解决低噪声放大器设计时带宽和驻波的问题,提出一种结合平衡放大结构和负反馈技术设计宽带低噪声放大器的方法。采用ATF38143晶体管,利用ADS软件对其进行匹配优化,以自偏压的形式提供负压简化电路,通过并联谐振电路调节增益平坦度,设计出一个工作在1.5~2.5 GHz内、端口驻波小于1.4,噪声系数优于0.55、最大增益大于14 dB、带内增益平坦度优于2 dB的宽带低噪声放大器,很好地解决了低噪声放大器的带宽和驻波问题。  相似文献   

10.
基于低噪声电路设计原则,给出了一种用于核磁共振测井仪的前置放大电路.电路采用低噪声双极性晶体管MAT02作为第一级放大,采取负反馈稳定电路的增益,然后经过低噪声集成运放进行第二级放大,从而可提高整个前置放大电路的噪声性能.通过等效噪声模型的方法,定量计算了整个电路的噪声特性,同时得到了设计低噪声电路的一般性结论.计算表明:电路在源电阻为96 Ω的情况下,电路的最低噪声系数为1.5 dB;电路的等效噪声电压为0.57 nV/√Hz,在经过屏蔽的实验环境下,测得的等效噪声电压约为0.87 nV/Hz.  相似文献   

11.
采用TSMC 0.25 μm CMOS工艺,设计了一种2.4 GHz CMOS低中频结构的蓝牙射频接收机前端.整个接收机前端包含全差分低噪声放大器、混频器以及产生正交信号的多相滤波器.叙述了主要设计过程并给出了优化仿真结果.采用Cadence SpectreRF进行仿真,获得了如下结果:在2.5 V工作电压下,中频输出增益为21 dB,噪声系数为7 dB,输入P 1 dB为-21.3 dBm,IIP3为-9.78 dBm,接收机前端总的电流消耗为16.1 mA.  相似文献   

12.
提出了一种可用于0.1-1.2 GHz射频接收机前端的宽带巴伦低噪声放大器(Balun-LNA).采用噪声抵消技术,输入匹配网络的沟道热噪声和闪烁噪声在输出端被抵消,在宽带内可同时实现良好的输入匹配和低噪声性能.通过分别在输入匹配级内增加共源放大器,在噪声抵消级内增加共源共栅放大器实现单端转差分功能.电路采用电流复用技术降低系统功耗.设计基于TSMC 0.18 μm CMOS工艺,LNA的最大增益达到13.5dB,噪声系数为3.2-4.1 dB,输入回波损耗低于-15 dB.在700 MHz处输入1 dB压缩点为-8 dBm,在1.8 V供电电压下电路的直流功耗为24 mW,芯片面积为0.062 5 mm 2 .  相似文献   

13.
针对目前在LNA设计中存在需要在任意给定的功耗条件下噪声和输入阻抗同步匹配的问题,本文采用TSMC0.18μm RF工艺,通过利用共源共栅结构和功耗受限下噪声和阻抗同步匹配技术(PCSNIM),提出了一个可支持IEEE802.11a无线局域网(WLAN)标准的5.8GHz CMOS低噪声放大器,在中心频率处所提出的低噪放大器的噪声系数(NF)只有0.972dB。仿真结果表明:在1.8V供电电压下LNA的功耗为6.4mW,增益可达17.04dB,输入1dB压缩点(P1dB)约为-21.22dBm,同时具有良好的输入输出匹配特性。  相似文献   

14.
针对功耗和体积均受限的专用小型无线通信系统提升通信距离的要求,以提高接收机灵敏度为研究目的,采用软件仿真ADS2005的方法改进了低噪声放大电路RF2373的设计.在仿真软件下通过建立低噪放RF2373的二端口模型,得出了二端口的S参数特性曲线.采用微带线匹配的方法获得了低噪声放大电路的优化二端口模型,以及匹配后的S参数特性曲线.匹配后的各项S参数较匹配前均有所改善,设计的低噪声放大电路满足射频前端电路的特性要求.给专用测试系统的无线数据传输的硬件设计提供了理论基础.  相似文献   

15.
本文设计的低噪声放大器利用集成芯片ATF36163完成了电路的设计,利用ADS软件进行设计、优化和仿真,最后给出了仿真结果、版图设计及实测结果。同时通过研究电路参数的灵敏度对该低噪声放大器进行了灵敏度分析,使得低噪声放大器不仅符合接收机对LNA的指标要求,还能使性能更加稳定。  相似文献   

16.
提出了一种采用0.18μm CMOS工艺的3.1~10.6GHz超宽带低噪声放大器.电路的设计采用了电流复用技术与阻抗反馈结构,具有低功耗和平坦增益的特性.仿真结果显示,在3.1~10.6GHz频率变化范围内,低噪声放大器达到平均17.5dB的电压增益,输入和输出的回波损耗均低于-8dB,最小噪声系数约为2.8dB,在电源电压为1.5V下功耗约为11.35mW.  相似文献   

17.
设计了一种400~800 MHz带有源巴伦的低噪声放大器(balun-LNA).电路输入级采用共栅结构实现宽带匹配,输出端使用共源漏技术来实现巴伦功能,将单端输入信号转变为差分输出信号,利用参数优化设计来降低噪声性能.电路采用TSMC 0.18 μm RF CMOS工艺仿真,结果表明:在400~800 MHz工作频段内,balun-LNA的输入反射系数小于-12 dB,噪声系数为3.5~4.1 dB,电压增益为18.7~20.5 dB,在3.3V电压下功耗约为17.8 mW.  相似文献   

18.
采用两级锗硅异质结晶体管(SiGe HBT)低噪声放大芯片,通过ADS2015进行宽带电路匹配设计了一款频率覆盖超短波到L波段的宽带低噪声放大器(LNA).仿真显示该LNA工作频率在0.07~2 GHz,增益Gain>30 dB,噪声系数NF<0.78,增益平坦度Gain Flatness<0.2 dB,输入输出回波损耗Return Loss<-10 dB.实测结果显示常温下该LNA测试指标和仿真结果基本一致,233 K低温下该LNA的Gain实测值比常温下测试结果增大1 dB左右,其它指标基本一致,证实了采用SiGe HBT放大芯片设计的低噪声放大器噪声性能良好且具有低温敏特性.  相似文献   

19.
本文采用TSMC 0.18μm CMOS工艺,设计了两款可工作在2.4GHz频率上的窄带低噪声放大器(LNA)。两款LNA的电路结构分别为Cascode电路结构应用电流复用技术,以及应用正体偏置效应的折叠Cascode结构。所设计的两款窄带LNA的仿真结果表明,在2.4 GHz工作频率上,Cascode结构LNA在1.5V供电电压下电路功耗为4.9mW,增益为23.5dB,输入输出反射系数分别为-16.9dB与-16.3dB,噪声系数为0.72dB且IIP3为3.12dBm;折叠Cascode结构LNA可在0.5V供电电压下工作,功耗为1.83mW,增益为23.8dB,输入输出反射系数分别为-28.2dB与-24.8dB,噪声系数为0.62dB且IIP3为-7.65dBm,适用于低电压低功耗应用。  相似文献   

20.
设计了一种应用于光发射功率自适控制系统中的低噪声宽带跨阻放大器,用0.6μm CMOS工艺实现,在156MHz-3dB带宽范围内最小均方根等效输入噪声电流为130pA/√Hz,在无光状态时电路的总电流为3.3mA,功耗低于国外同类产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号