首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
连续流双污泥系统反硝化除磷脱氮特性   总被引:8,自引:0,他引:8  
以生活污水为处理对象 ,对基于缺氧吸磷理论开发出的连续流厌氧 /缺氧 -硝化 (A2 N)双污泥新工艺反硝化除磷脱氮的性能进行了考察 .试验结果表明 :A2 N双泥系统能使硝化菌和反硝化聚磷菌分别在各自最佳的环境中生长 ,利于系统脱氮除磷的稳定和高效 ,可控制性也得到了提高 .研究发现 ,当进水 ρ(C) / ρ(N)为 3.97时 ,ρ(总氧 ,TN) / ρ(总磷 ,TP)和化学耗氧量 (COD)去除率分别为 80 .99% ,92 .87%和 91% ;而当提高进水 ρ(C) / ρ(N)至 6 .4 9时 ,可进一步提高脱氮除磷效果 ,ρ(TN) ,ρ(TP)和COD去除率分别达到 92 .7% ,97.95 %和 95 % .可见 ,该工艺较适合进水COD/ ρ(TN) 偏低的城市污水脱氮除磷处理 .  相似文献   

2.
采用强化除磷反应器,通过厌氧/好氧和厌氧/缺氧过程,分两阶段对硝化菌和反硝化聚磷菌(DNPAOS)进行选择和富集,形成了以二者为优势菌群的同步强化生物除磷脱氮体系。实验结果表明,体系同时存在硝化和反硝化吸磷过程,达到在废水处理过程中同时脱氮除磷的效果,经过58周期的厌氧/缺氧驯化富集,污水氨氮和总磷的去除率分别达到了93%和97%,DNPAOS占总PAOS的48%。  相似文献   

3.
为了解处理生活污水的强化生物除磷(EBPR)系统的除磷和脱氮特性,采用SBR接种普通活性污泥,通过逐步提高进水COD浓度的方式,结合短污泥龄控制,实现了EBPR系统的快速启动,并对启动后系统的脱氮除磷特性进行了研究.试验结果表明:当进水COD浓度由200 mg/L左右逐步提高至500 mg/L左右时,29 d可实现EBPR系统的启动,此后30 d内出水磷浓度稳定维持在0.5 mg/L以下,磷去除率平均达99.4%.该系统还可长期高效稳定地用于高磷污水(含磷40mg/L)的处理.成功启动后的EBPR系统内聚磷菌(PAOs)为优势菌,占全菌总数的34%±3%,但也存在硝化反硝化菌和聚糖菌.在EBPR系统稳定运行时的好氧段,PAOs吸磷的同时伴随着脱氮菌群的同步硝化反硝化(SND)作用,使得平均总无机氮(TIN)损失达7.6 mg/L,系统总氮(TN)去除率在70%左右.EBPR系统内除磷耦合同步硝化反硝化,可实现污水的脱氮除磷.  相似文献   

4.
SBR反应系统中反硝化除磷的研究   总被引:1,自引:0,他引:1  
米海蓉 《应用科技》2006,33(7):54-56
通过试验研究反硝化聚磷菌在厌氧-缺氧和厌氧-好氧2个不同SBR反应系统中达到了同步脱氮除磷的效果.这一结果说明A2SBR反应系统中的聚磷菌能够利用硝酸根代替氧作为最终电子受体.聚磷菌在A/OSBR中的聚磷速率是30-70 mg P/gMLVSS.h,在A2SBR中是15-32 mg P/gMLVSS.h.  相似文献   

5.
以人工配置的模拟城市污水为处理对象,利用厌氧/好氧(A/O)模式运行的微压内循环多生物相反应器(MPSR),研究了不同曝气量[0.100,0.075和0.050L/min]对MPSR反应器同步脱氮除磷的影响.结果表明:随着曝气量的降低,总氮去除率由75.39%提高至81.21%,同步硝化反硝化效率由20.68%提高至33.55%,但出水均符合一级A标准.当曝气量为0.050L/min)时,MPSR反应器具有最佳的脱氮除磷效果,出水中COD,NH4+-N,总氮、总鳞平均质量浓度分别为30.77,0.15,7.14和0.06mg/L.相对低的曝气量有利于强化MPSR的脱氮性能,稳定除磷效果,同时有利于节约能耗.  相似文献   

6.
为探究AOA-SBR工艺的污水处理效果及其强化生物除磷性能,试验采用厌氧、好氧和缺氧运行模式的SBR反应器进行研究.结果表明,AOA-SBR工艺具有较好的污水处理效果,在增设的缺氧段中发生的反硝化除磷现象,强化了系统脱氮除磷能力.试验期间,在缺氧阶段COD浓度、N H+4—N质量浓度、T N浓度、T P浓度平均分别下降了12、0.35、3、7.36 m g/L,最终平均去除率分别为89.71% 、99.03% 、78.56% 、87.28%.ORP、DO、pH的历时均能较好地反映AOA-SBR工艺在不同时段的生化反应状态.经过培养驯化后,AOA-SBR系统内聚磷菌属Tetrasphaera和反硝化聚磷菌属Dechloromonas均得到明显的富集;主要脱氮功能菌属逐渐由Thauera、Thermomonas、Terrimonas演替为内源反硝化能力较强的Can-didatus_Competibacter、Pseudomonas等菌属,内源反硝化菌和反硝化除磷菌的共同作用保障了系统的脱氮效果.试验结果为AOA-SBR工艺实际应用和推广提供了参考.  相似文献   

7.
A2SBR 反硝化除磷系统的启动和脱氮除磷性能   总被引:2,自引:0,他引:2  
采用厌氧-缺氧SBR(A2SBR)系统,研究了反硝化除磷单污泥系统的启动条件,并考查了该工艺的脱氮除磷效能。结果表明,以城市生活污水处理厂活性污泥为种泥,在厌氧相进水COD浓度250mg·L-1,缺氧相进水NO-3-N浓度30mg·L-1左右时,通过"厌氧-沉淀排水-缺氧-沉淀排水"的周期性运行,可在29d内成功启动A2SBR反硝化除磷系统;运行方式改为"厌氧-缺氧-沉淀排水"后,A2SBR系统很快达到了稳定,在厌氧相和缺氧相HRT分别为3h和4.5h的条件下,其脱氮和除磷效率可分别达到90%和95%,COD去除率大于88%,最终出水的COD,NO-3-N和PO3-4-P浓度可分别降至28,3.35,0.57mg·L-1,表现出良好的反硝化脱氮和除磷性能。  相似文献   

8.
利用反硝化聚磷菌进行动态与静态相结合的反硝化聚磷试验,研究A^2/O厌氧段聚磷菌的反硝化聚磷特性。研究结果表明,在A^2/O厌氧段中占聚磷菌总数52%的菌具有同步反硝化聚磷的生物学特性。当以NO3^- -N作电子受体进行聚磷时,其硝酸盐浓度应限制在50 mg/L以下,初始硝酸盐浓度越高,反硝化速率和缺氧聚磷速率及去除率越快,系统由聚磷转变为释磷的时间将延后。由于释/聚磷过程都需要碳源,所以,应控制进水的化学耗氧量(COD),以200 mg/L为最佳,使在释磷时有充足的碳源而在聚磷时碳源又较少。pH值对释/聚磷有不同程度的影响,在一定范围内,初始pH值越高,释磷效果越好,但当pH≥8.0时,会引起磷酸盐沉积而导致磷酸根浓度降低,从而无法正确判断释磷和生物聚磷效果,反硝化除磷系统的pH值应控制在7.0-7.5的范围内。  相似文献   

9.
两级SBR生物除磷脱氮工艺效果实验研究   总被引:4,自引:0,他引:4  
利用SBR的工艺特点,通过合理控制泥龄,将聚磷菌与硝化菌分别控制在2个SBR反应器中优势生长,以解决聚磷菌与硝化菌等混合生长系统在除磷和脱氮过程中的矛盾。实验证明两级SBR工艺系统生物除磷脱氮是可行的。  相似文献   

10.
A_2N-SBR双污泥反硝化生物除磷系统效能分析   总被引:8,自引:0,他引:8  
采用生活污水和A2N-SBR工艺对反硝化除磷过程进行了研究.在进水COD浓度为325mg/L,磷浓度为9.1mg/L,氨氮浓度为65mg/L的条件下,出水氨氮浓度和磷浓度分别为3.3mg/L和0.17mg/L,氮和磷的去除率分别为95%和98%.进水C/N比对A2N-SBR反硝化除磷体系的除磷和脱氮效率都有重要影响,在进水C/N比为5时获得了最佳的脱氮和除磷效率;当C/N比小于5时,氮和磷的去除率都有大幅度的下降;当C/N比大于5时,氮的去除率未受到影响,而磷的去除率却有所下降.  相似文献   

11.
采用市政污水研究进水碳源含量不同时交替式A2/O工艺去除氮磷的途径以及效果.调控进水COD浓度分别在150、200、300、400 mg.L-1左右,氮磷浓度不变,跟踪厌氧池与缺氧池内NO3--N与总磷(TP)的变化规律.实验结果显示,几种进水水质下,系统都具有优良的除磷脱氮性能;进水COD在300、400 mg.L-1时,缺氧池内NO3--N浓度始终低于1 mg.L-1,而TP浓度由于推流作用逐渐上升,系统主要通过反硝化异养菌利用外碳源进行反硝化作用去除NO3--N;进水COD在150、200 mg.L-1时,缺氧池内TP浓度一直较低,有反硝化聚磷现象,表明交替式A2/O系统内存在专性好氧聚磷菌与反硝化聚磷菌.  相似文献   

12.
 为探讨反硝化除磷工艺对低碳源生活污水的处理性能,在序批式移动床生物膜反应器(SBMBBR) 中,通过对反硝化除磷菌的驯化,考察厌氧过程中COD 质量浓度、pH 值对释磷以及缺氧阶段NO3--N 和NO2--N 质量浓度对反硝化吸磷性能的影响。实验结果表明:周期为8 h 的运行中,COD、氨氮、TP 的去除率分别达到95%、90%、90%以上,出水质量浓度分别为8.07、3.67、0.46 mg/L,达到城镇污水一级A 排放标准。NO3--N 作为电子受体,60 mg/L 取得最佳的缺氧吸磷效果,高于20 mg/L 的NO2--N 作为电子受体时,反硝化除磷菌活性受到抑制。研究表明,在序批式移动床生物膜反应器中,以NO3--N作为电子受体进行反硝化除磷具有很好的处理效果。  相似文献   

13.
不同电子受体影响下的反硝化除磷过程   总被引:1,自引:0,他引:1  
为进一步了解反硝化除磷菌的代谢行为,以序批式反应器(SBR)在厌氧/好氧条件下培养的活性污泥为对象,进行批次试验,研究了不同电子受体对反硝化缺氧吸磷的影响.结果证实:只要有电子受体存在,不论是硝氮(NO3--N)还是亚硝氮(NO2--N),缺氧吸磷都会发生,但NO2--N的缺氧吸磷量相对较少;反应开始时的电子受体质量浓度对反应过程影响很大,试验中NO3--N质量浓度为30mg/L、NO2--N质量浓度为20mg/L时吸磷量和吸磷速率均达到最高值;低于该值时,吸磷量和吸磷速率随着电子受体质量浓度的提高而增加;高于该值时,吸磷量和吸磷速率随着电子受体质量浓度的提高而减少;NO2--N质量浓度达80mg/L时,没有发现对反应的抑制作用;好氧吸磷效果好于缺氧吸磷.试验还发现反应器在厌氧/缺氧条件下连续运行时,反硝化除磷菌的厌氧释磷和缺氧吸磷能力将很快丧失.  相似文献   

14.
Literatures revealed that the electron acceptor-nitrite could be inhibitory or toxic in the denitrifying phosphorus removal process. Batch test experiments were used to investigate the inhibitory effect during the anoxic condition. The inoculated activated sludge was taken from a continuous double-sludge denitrifying phosphorus and nitrogen removal system. Nitrite was added at the anoxic stage. One time injection and sequencing batch injection were carried on in the denitrifying dephosphorus procedure. The results indicated that the nitrite concentration higher than 30 mg/L would inhibit the anoxic phosphate uptake severely,and the threshold inhibitory concentration was dependent on the characteristics of the activated sludge and the operating conditions; instead,lower than the inhibitory concentration would not be detrimental to anoxic phosphorus uptake,and it could act as good electron acceptor for the anoxic phosphate accumulated. Positive effects performed during the denitrifying biological dephosphorus all the time. The utility of nitrite as good electron acceptor would provide a new feasible way in the denitrifying phosphorus process.  相似文献   

15.
为了实现污水中磷的高效去除和磷资源回收,将化学除磷技术与双污泥反硝化聚磷工艺(Anaerobic/Anoxic/Nitration,A2N)结合,开发了新型双污泥反硝化聚磷诱导结晶磷回收工艺(Anaerobic/Anoxic/Nitration-Induced Crystallization process,A2N-IC),并比较了A2N-IC工艺和A2N工艺的脱氮除磷性能.结果表明:在进水总磷(Total Phos-phorus,TP)浓度为5.22~8.31mg/L的情况下,A2N,A2N-IC工艺TP去除率分别为87.4%,99.6%,A2N-IC除磷效率和稳定性明显优于A2N工艺.2种工艺对氨氮的去除效果基本相同,分别为84.8%,84.4%.A2N-IC工艺中化学除磷对生物除磷的辅助是保证该工艺稳定高效运行的主要原因.A2N-IC工艺结晶柱中的主要产物为羟基磷酸钙,鸟粪石在结晶柱中难以形成.  相似文献   

16.
碳源浓度对SBR法同步脱氮除磷的影响试验研究   总被引:8,自引:0,他引:8  
目的研究碳源浓度变化对同步反硝化聚磷的影响。方法采用厌氧/缺氧/好氧方式运行的SBR反应器。结果相对于不同C/P与C/N值,分别得到相关释/聚磷和反硝化速率;在C/P值大于23,C/N值大于5的条件下,SBR系统对磷、氮及碳的去除率在90%以上,其中通过反硝化聚磷去除磷的比重高达60%~70%。结论在进一步提高C/P,C/N值条件下,碳源浓度的变化对释磷、聚磷速率的影响不显著,但对反硝化速率的影响相对明显。  相似文献   

17.
好氧段对反硝化除磷系统的影响   总被引:4,自引:0,他引:4  
生物除磷系统在厌氧/缺氧交替变化的环境中可以发生反硝化除磷现象,通过研究发现:没有好氧段的A/A-SBR系统除磷能力低于有好氧段的A/AO-SBR系统,而且随着运行时间的增加A/A-SBR系统的除磷能力逐渐减弱,污泥产率也从起始的0.22 Gmlss/Gcod d逐渐下降趋于零增长甚至负增长.试验结果表明,设置后好氧段是保证反硝化除磷系统稳定运行的关键.但是,较长的好氧时间将导致NO3-N的积累,并抑制A/AO-SBR系统除磷,而 0.5 h的后好氧时间既可以确保A/AO-SBR反硝化除磷系统的稳定运行又可以获得好的除磷效果.  相似文献   

18.
传统生物脱氮除磷与反硝化除磷脱氮工艺的比较   总被引:1,自引:0,他引:1  
在介绍传统脱氮除磷工艺和反硝化除磷脱氮工艺过程的基础上,对两者的反应机理及脱氮除磷效果进行了比较和分析。  相似文献   

19.
为了提高反硝化除磷工艺的脱氮除磷效率,以反硝化除磷污泥为研究对象,采用静态试验进行对比研究,考察碳源浓度对缺氧反硝化聚磷的影响.结果表明:当缺氧段初始碳源浓度为10.0 mg/L时,亚硝酸盐积累严重,反硝化聚磷受到抑制;当缺氧段初始碳源浓度由24.6 mg/L上升至176.8 mg/L时,随着碳源浓度的增加,反硝化速率...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号