首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以3,3′,4,4′-二苯酮四酸二酐(BTDA)作为二酐单体,与2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和4-苯基-2,6-双(4-氨基苯基)吡啶(PBAP)通过常规的两步法,合成了可溶性共聚聚酰亚胺.利用IR、1H NMR、XRD、粘度测试、溶解性测试和TGA等手段对聚合物的结构和性能进行了研究.结果表明,所得聚酰亚胺的结晶度较低,PAA特性粘数为0.32~0.46dL/g,溶解性较好,并有着优良的热稳定性.  相似文献   

2.
目的合成一种新型既可溶解又耐高温的聚芳醚。方法从分子设计的角度出发,研究最佳合成方法及合成途径。结果合成了一种新型不对称杂环类双酚单体4-(2,5-二甲基-4-羟基苯基)二氮杂萘酮,分别与4种活性双卤单体经芳香亲核取代缩聚,制备了一系列聚芳醚聚合物。该系列聚芳醚特性粘度范围在0.39-0.79dL/g,玻璃化温度在232-284℃,氮气中5%和10%热失重温度分别是421-440℃和434-453℃,表现出良好的热性能。它们均为无定形结构,在室温下易溶于NMP、DMAc、DMF、Py、CHC13等有机溶剂中。结论该方法适宜于合成既可溶解又耐高温的聚芳醚。  相似文献   

3.
在不同溶液中合成了一系列均苯二酐(PMDA)型和二苯醚二酐(ODPA)型聚酰胺酸(PAA)。由PMDA和二氨基二苯甲烷(MDA)或3,3‘-二甲基-4,4‘-二氨基二苯甲烷(DMMDA)在N-甲基吡咯烷酮(NMP)中合成的PAA在室温下呈凝胶态,而其它PAA在室温下均为透明溶液。考查了贮存温度、凝胶态、添加分子筛等条件对PAA稳定性的影响。PAA凝胶的贮存稳定性比PAA溶液好,在PAA溶液中加入0.4nm分子筛,有利于其长期贮存。  相似文献   

4.
质子导电离子交换膜由于其高导电率和优异的化学性质而广泛应用于H2/O2燃料电池,但是全氟化膜的昂贵的价格限制了它的市场应用,为此,研究者尝试生产廉价的代替品,磺化聚酰亚胺就是被人们看好的代替品之一.用3,3′-二磺酸钠基-4,4′-二氟二苯酮和对氨基苯酚为原料合成一种新型芳香族二胺,再将新型芳香族二胺和二酐以间甲酚为溶剂一步法合成一系列具有不同磺化度的聚酰亚胺,从而避免了由聚合物磺化改性引起的聚合物链的交联与降解.用红外吸收光谱和H NMR核磁共振光谱对新型芳香族二胺单体进行了表征,并用红外吸收光谱表征了聚合物.研究了共聚物的组成结构,溶解性,及磺化度对共聚物的影响.结果表明DMF,DMAc,NMP等均是该磺化聚酰亚胺的良溶剂,聚合物粘度随着磺酸基含量的增加而降低.  相似文献   

5.
以CBTDA为单体的脂环族聚酰亚胺的合成及其性能   总被引:3,自引:0,他引:3  
胡朝霞  印杰 《上海交通大学学报》2005,39(11):1821-1823,1832
通过Diels—Alder及[2+2]环加成反应,合成了1,2;3,4-环丁烷-对称(3,6-氧桥-1,2,3,6-四氢苯-1,2-二甲基甲酸酐)(CBTDA),然后与4,4’-二氨基-3,3’-二甲基二苯基甲烷(DADMDPM)、4,4’-二氨基二苯基醚(DADPE),通过化学亚胺化和热亚胺化法合成了两种脂环族聚酰亚胺.所合成的聚酰亚胺具有较好的溶解性,高的玻璃化转变温度(Ta〉290℃)及热稳定性(分解温度Td〉490℃),所合成的聚酰亚胺薄膜在可见光区域具有较高的透明性,介电系数在2.8~2.9.  相似文献   

6.
芳-脂族共聚酯酰胺热致液晶的合成和表征   总被引:1,自引:0,他引:1  
利用芳-脂复合二酰氯和四种芳族二元胺合成了3个系列含有两种芳香二胺结 构单元的无规芳-脂共聚酯酰胺,其对数比浓粘度为 1.30~2.18 dL/g。用偏光显微镜、 X光衍射和DSC对聚合物的液晶行为进行了研究。  相似文献   

7.
透明、可溶性聚酰亚胺的合成与性能研究   总被引:5,自引:0,他引:5  
采用带有侧基的柔顺性二胺单体3,3′-二甲基-4,4′-二氨基二苯甲烷分别与3,3′,4,4′-二苯醚四羧酸二酐和3,3′,4,4′-二苯酮四段酸二酐共聚,合成了可容于DMF、DMAc、NMP等强权性溶剂的可溶性聚酰亚胺,研究中发现,制备的聚酰亚胺薄膜有一定的透明性,通过和常规聚酰亚胺对比,也有良好的耐热性,热分解温度均在500℃以上。因而作为液晶显示器的光学补偿膜具有实际的应有价值。  相似文献   

8.
近20年来,静电纺丝技术得到了快速发展和应用; 不同材料的电纺纳米纤维(包括聚合物基、金属基、陶瓷基、碳基及其复合材料等)已在能源、环境、生物医学和国防军工等领域得到了泛应用.通常,静电纺丝技术需将聚合物或聚合物前驱体原料溶解于溶剂中或者加热熔融进行电纺加工.然而,芳杂环高性能聚合物(如聚酰亚胺、芳香聚酰胺、聚苯等)由于其主链上的刚性环状结构,既难溶解于普通有机溶剂,也难加热熔融,没有流动性,故难以通过静电纺技术制备其纳米纤维.为了解决这个难题,研究人员努力探索了许多间接方法和途径来制备电纺高性能聚合物纳米纤维,并取得了突破性进展.如通过电纺前驱体法大规模地制备聚酰亚胺纳米纤维、利用热致重排进行分子转化制备了电纺聚苯并二噁唑纳米纤维、利用模板电纺法制备了聚苯基和聚吡咙基纳米纤维等.该文详细介绍了通过静电纺丝技术制备高性能聚合物纳米纤维的最新进展,具体包括聚酰亚胺、聚苯并咪唑、聚苯撑苯并二噁唑、芳香聚酰胺、聚苯、聚吡咙等芳杂环聚合物纳米纤维.此外,由于聚丙烯腈是制备碳纤维的重要前驱体,也对电纺聚丙烯腈纳米纤维的制备做了简要介绍.  相似文献   

9.
采用电纺及热亚胺化技术制备了聚酰亚胺/Ag纳米纤维复合材料, 用X-射线衍射(XRD)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)对纤维表面形貌及结构进行了表征, 并研究其电学性能及力学性能. 结果显示, 随着Ag含量的增加, 复合纳米纤维膜的电导率逐渐提高. 当Ag的质量分数为35%时, 复合纳米纤维膜的导电率为2.8 μs/cm, 同时其拉伸强度高达240 MPa.  相似文献   

10.
采用先合成含硫醚键的单体, 后进行低温溶液缩聚的方法, 合成高分子量的新型聚芳硫醚酰胺类树脂-聚芳硫醚砜酰胺(PASSA)和聚芳硫醚酮酰胺(PASKA), 其特性粘数分别为0.72 dL/g(NMP为溶剂)和0.62 dL/g(浓硫酸为溶剂), 并对单体及聚合物进行结构与性能表征. 通过热分析得出聚合物PASSA和PASKA的玻璃化温度分别为279.9 ℃和188.7 ℃, 热分解温度分别为461.5 ℃和467.08 ℃, 表明PASSA和PASKA具有优良的热性能; 溶解性实验表明, PASSA和PASKA是一种耐化学腐蚀性的树脂.  相似文献   

11.
以4,6-二氨基间苯二酚盐酸盐和对苯二甲酸为原料,制备了4,6-二氨基间苯二酚-对苯二甲酸盐(TA盐),并采用傅里叶红外(FTIR)、质谱(MS)、差热分析(DSC)和元素分析等测试手段对其结构进行了表征;以多聚磷酸为介质,将TA盐缩聚得到具有较高粘度(特性粘数[η]=24.5dL/g)的聚苯撑苯并二恶唑(PBO),并通过FTIR、元素分析和热重分析(TGA)等对PBO合成工艺和热性能进行了研究.这种通过TA盐聚合的方法不仅缩短了反应时间,而且比较容易得到具有较高相对分子质量的PBO.  相似文献   

12.
以含磷芳香二胺双(3–氨基苯基)苯基氧化膦(BAPPO)和己二酸为单体,通过Yamazaki膦酰化反应制备新型半芳香聚酰胺(PA6I).研究反应温度、单体浓度、溶剂体系以及反应时间对聚合物特性黏度的影响,得到特性黏度为0.47,dL/g的聚合物.利用傅里叶变换红外光谱(FTIR)、核磁共振谱(1H,NMR)对含磷半芳香聚酰胺进行结构表征;利用差示扫描量热法(DSC)和热重分析(TGA)研究新型半芳香聚酰胺的热性能.结果表明聚合物具有优良的热性能,Tg为206,℃,5%热分解温度为388.1,℃.薄膜样品的极限氧指数为43%,表明该聚合物有优良的阻燃性.  相似文献   

13.
利用4种不同的脂肪族二元醇(乙二醇、1,3 丙二醇、1,4 丁二醇、1,6 己二醇)与己二酸和对苯二甲酸二甲酯制备出4种不同脂肪/芳香比的共聚酯:(对苯二甲酸乙二醇-co-己二酸乙二醇)共聚酯(PETA)、(对苯二甲酸丙二醇-co-己二酸丙二醇)共聚酯(PPTA)、(对苯二甲酸丁二醇-co-己二酸丁二醇)共聚酯(PBTA)和(对苯二甲酸己二醇-co-己二酸己二醇)共聚酯(PHTA),并比较了它们的热性能和生物降解性能。结果表明:相同二元醇、不同脂肪/芳香物质的量比的共聚酯,随脂肪族单体含量的增加,玻璃化转变温度(Tg)单调降低,熔点(Tm)降低,生物降解能力增加;相同脂肪/芳香物质的量的比、不同二元醇制备的共聚酯,Tg随二元醇碳原子的增加而单调下降,Tm变化顺序为:Tm(PPTA)>Tm(PBTA)>Tm(PHTA)>Tm(PETA),1,3-丙二醇体系的共聚酯具有最佳的耐热性能;生物降解能力随二元醇单体碳原子数的增加而增加。  相似文献   

14.
以双酚A二缩水甘油醚(DGEBA)和对甲氧基苯胺为单体制备了芳香型聚胺醚,并通过原位聚合的方法制备了连续玻纤增强热塑性聚胺醚(GF/PHAE)复合材料。研究了DGEBA/对甲氧基苯胺体系的反应特性、动态黏度、熔体流动速率(MFR)、耐热性及聚胺醚浇注体和GF/PHAE复合材料的力学性能,采用红外光谱法(FT-IR)对聚胺醚进行了结构分析,并借助SEM分析了GF/PHAE复合材料的断面形貌。研究结果表明:DGEBA/对甲氧基苯胺体系在25 ℃下放置85 min后黏度为2100 mPa•s,黏度较低有利于纤维的浸润;聚胺醚为可熔融的热塑性聚合物,反应时间5 h、反应温度140 ℃下制备的聚胺醚熔融指数较低为1.4 g/10min;聚胺醚的玻璃化转变温度(Tg)为86.7 ℃,起始分解温度为310.2 ℃;聚胺醚浇注体的弯曲强度126.9 MPa,弯曲模量10.2 GPa;当玻纤体积分数为59.3%时,GF/PHAE复合材料弯曲强度1327.2 MPa,弯曲模量21.8 GPa,层间剪切强度86.2 MPa;SEM断面分析表明聚胺醚对玻璃纤维具有良好的界面黏接。  相似文献   

15.
用4,4′-二氨基二苯醚(ODA)作为二胺,3,3′,4,4 ′-二苯酮四甲酸二酐(BTDA)及2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)作为二酐,以N,N-二甲基甲酰胺(DMF)为溶剂,通过常规的两步法,合成聚醚酰亚胺.用FT-IR、TGA、溶解性测试和拉伸测试对聚合物的结构和性能进行表征.结果表明,在1780 cm-1、1720 cm-1和744 cm-1左右出现了聚酰亚胺的特征吸收峰.所得聚酰亚胺有很好的热稳定性,在氮气氛中,起始降解温度506.6~519.6℃,10%失重温度(T10)为534.4~542.3℃、800℃质量保持率为52.7%~61.7%.所得聚酰亚胺膜的拉伸强度、拉伸模量、断裂伸长率、吸水率分别为128.2~281.3 MPa、1.82~4.45 GPa、100.0%~11.9%、0.52%~0.70%.  相似文献   

16.
不同侧基对磺化聚醚醚酮质子交换膜的影响   总被引:5,自引:1,他引:4  
以特丁基对苯二酚和邻甲基对苯二酚分别制备两个系列磺化聚醚醚酮. 对聚合物及其膜的一些性能进行了研究, 探讨了不同取代侧基对聚合物溶解性、 热性能、 力学性能和质子传导性等性能的影响.  相似文献   

17.
带侧链液晶基团的聚对苯导电高分子的合成   总被引:3,自引:0,他引:3  
在FeCl2存在下,通过铡链羧基的高分子反应,合成了聚。用红外和紫外光谱法,对PE产物进行了结构表征,并得出PE在30℃时的特征粘度为0.81dL/g。  相似文献   

18.
以钛酸四正丁酯为催化剂,2-乙基己醇为封端剂合成邻苯二甲酸聚1,2-丙二醇酯、邻苯二甲酸聚1,3-丁二醇酯和邻苯二甲酸聚1,4-丁二醇酯系列聚酯.经化学方法分析比较3种样品的酸值、羟值和皂化值.通过红外光谱仪、凝胶渗透色谱和热重分析仪-差示量热扫描仪等仪器分别分析比较了3种聚酯样品的分子结构、数均相对分子质量和分布以及热稳定性能,理论计算了热分解表观活化能.邻苯二甲酸聚1,2-丙二醇酯、邻苯二甲酸聚1,3-丁二醇酯和邻苯二甲酸聚1,4-丁二醇的分解焓分别为648.7 J/g、822.6 J/g和266.7 J/g,热分解表观活化能分别为77.36 kJ/mol、66.80 kJ/mol和71.22 kJ/mol.  相似文献   

19.
为改进4,6-二氨基间苯二酚磷酸盐的合成工艺,采用多聚磷酸(PPA)法制备磷酸盐,并对其结构进行表征。结果表明:PPA法制磷酸盐的合成工艺,可以使反应时间从几天缩短到几个小时,反应产率从79.46%提高到91.12%。以次亚磷酸为还原剂对磷酸盐单体进行稳定化的研究表明:稳定后的磷酸盐在室温条件下储藏一个月后,基本不发生氧化。将稳定化后的单体和对苯二甲酸(TA)在PPA的介质中进行缩聚反应可以得到具有高聚合度(特性粘数[η]=17 dL/g)的聚亚苯基苯并二噁唑(PBO)。  相似文献   

20.
本文以聚乳酸(PLA)和海藻酸钠(SA)为原料,采用流延成膜法制备了PLA/SA共混膜,并研究了PLA/SA共混膜的吸湿、力学性能及热学性能。结果表明:PLA与SA分子之间存在着较强的氢键作用力;SA的引入,提高了共混膜的结晶性能;共混膜的吸湿率随共混膜中SA含量的增加而增加;力学性能随SA含量的增加而减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号