首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
针对水系镁离子电池正极材料循环不稳定及电化学性能差的问题,采用Mn3O4作为水系镁离子电池正极材料,通过简单的溶液共沉淀法将Mn3O4与碳纳米管(CNTs)原位复合形成Mn3O4/CNTs。经X射线粉末衍射仪(X-ray diffractometer, XRD)、扫描电子显微镜(scanning electron microscopy, SEM)、通射电子显微镜(transmission electron microscopy,TEM)和循环伏安(cyclic voltammetry,CV)及充放电测试等表征,结果表明CNTs表面均匀附着尖晶石型Mn3O4纳米颗粒,提高了Mn3O4电极的导电性和电化学性能。Mn3O4/CNTs正极材料在100 m A/g下表现出305 mAh/g的比容量及长循环寿命,远高于Mn3O4的电池性能。Mn3O4/CNTs材料作为水系镁离子电池正极材料具有潜在的应用价值。  相似文献   

2.
采用固相法合成纯相的Na_2Co_2TeO_6材料.利用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)研究其晶体结构和元素价态,并用恒流充放电测试、倍率及循环伏安测试研究该材料在3.0~0.01 V内的电化学性质和动力学性能.结果表明:Na_2Co_2TeO_6作为电池负极材料具有良好的循环性能,稳定容量为200mA·h/g,充放电效率为95%;该材料具有较好的倍率性能,在电流密度500 mA/g下,仍可保持50 mA·h/g的稳定容量.  相似文献   

3.
采用固相法合成纯相的LiFe(MoO4)2材料.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和超导量子干涉仪(SQUID)对其晶体结构及其磁学性质进行研究,并采用恒流充放电测试研究该材料在3.0~1.0V内的电化学性质.电化学测试表明,LiFe(MoO4)2作为正极材料具有良好的循环性能,稳定比容量为200mA·h/g,充放电效率为98.5%.  相似文献   

4.
采用高温固相浸渍法合成了多元复合掺杂尖晶石型锰酸锂Li 1.02MxMn 2-xQyO 4-y正极材料.XRD表征合成的产物均为良好的尖晶石型结构材料;SEM表明所合成的产物颗粒均匀且有良好的粒径分布.以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知:多元素掺杂的尖晶石型锰酸锂正极材料Li 1.02CoaCrbLacMn 2-a-b-cFyO 4-y较富锂尖晶石和单元素Co、Cr掺杂的正极材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性,80次循环后放电容量仍能保持94.5%以上;特别是高温(55 ℃)性能更加突出,40次循环后放电容量仍能保持102.1mA.h/g(91.5%)以上.作为锂离子电池的正极材料,该复合掺杂材料是众多取代钴酸锂材料中最具竞争力的材料之一,也有望成为锂离子动力电池的正极材料.  相似文献   

5.
可充镁电池正极材料MgTi2O5的研究   总被引:3,自引:0,他引:3  
采用溶胶-凝胶法合成了MgTi_2O_5材料.粉末X射线衍射(XRD)和扫描电子显微镜(SEM)测试表明,该材料结晶良好,粒径均匀.使用其作为镁电池的正极活性物质组成模拟电池,测试循环伏安(CV)、电化学阻抗(EIS)、循环充放电,结果表明,该正极材料具有较好的可逆充放电行为,反应历程涉及特性吸附,动力学性能有待改进.  相似文献   

6.
为提升钠离子电池的储钠性能,采用溶胶-凝胶法合成了Na_(0.7)Ni_(0.5)Mn_(0.3)Fe_(0.2)O_2层状金属氧化物正极材料,并探讨了柠檬酸含量对材料形貌、结构和电化学性能的影响.形貌和结构分析表明,所得电极材料的成分主要为多晶Na_(0.7)Ni_(0.5)Mn_(0.3)Fe_(0.2)O_2,并伴有少量Ni O;随着柠檬酸含量的增加,Na_(0.7)Ni_(0.5)Mn_(0.3)Fe_(0.2)O_2的颗粒尺寸减小但团聚现象更加明显.电化学测试结果表明,当柠檬酸与金属氧化物的物质的量比为0.3∶1时,所得Na_(0.7)Ni_(0.5)Mn_(0.3)Fe_(0.2)O_2正极材料具有最优的电化学性能,其首圈放电比容量高达128.1 mA·h/g,经50次充放电循环后,仍能释放出91.6 mA·h/g的可逆比容量.此外,Na_(0.7)Ni_(0.5)Mn_(0.3)Fe_(0.2)O_2正极材料还拥有良好的倍率特性,在1.0 C高倍率下,其放电比容量可达84.4 m A·h/g,在快速充放电钠离子电池应用方面展现出良好的前景.  相似文献   

7.
利用共沉淀法合成出了一系列化合物LiFe_xMn_(1-x)O_2(0≤x≤1),电化学测试表明LiFe_(0.25)Mn_(0.75)O_2可逆容量最高,当倍率为0.1C(1C=140mA/g)时,可逆容量可达180mAh/g.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线吸收谱(XAS)对所制备的材料的组成、形貌和精细结构进行了表征.XRD和XAS的结果显示LiFe_xMn_(1-x)O_2(0x1)含有三重晶体相即尖晶石相(LiMn_2O_4)、富锂相(Li_2MnO_3)和层状相(LiFeO_2).另外,XAS结果证明材料中的Mn相和Fe相是随机堆叠的.该研究表明Fe的替代影响了晶体相的组成和Mn相的局域结构,进而调节了该正极材料的电化学性能,得到当x=0.25时最优的电化学性能.  相似文献   

8.
以Mn(NO_3)_2和NaOH为原料,采用沉淀法合成了用作超级电容器电极材料Na_(0.7)MnO_(2.05).扫描电子显微镜(SEM)观察结果表明所制备样品呈层状板块形貌.电化学测试结果表明,Na_(0.7)MnO_(2.05)是一种性能比较优良的超级电容器电极材料.在1mol·L~(-1) Na_2SO_4电解质溶液中,0~1V的电压范围内,充放电电流密度为200mA·g~(-1)时,比容量高达201F·g~(-1),库伦效率接近100%.  相似文献   

9.
利用水热法合成二硫化锡六方晶片,通过氧化聚合包裹聚苯胺,水热还原制备锡氧硫化合物@聚苯胺@还原氧化石墨烯(SnO_xS_y@PANI@rGO)复合材料.分别利用X射线衍射(X-ray diffraction,XRD)、傅里叶变换红外(Fourier transform infrared,FT-IR)光谱、扫描电子显微镜(scanning electron microscope,SEM)和透射电子显微镜(transmission electron microscope,TEM)对材料进行形貌和物相分析,结果表明:制备的六方形SnO_xS_y被PANI和rGO双层包覆.将复合材料作为锂离子电池的负极进行电化学性能研究,结果显示:由于多元复合材料中的聚苯胺和还原石墨烯增加了其导电性,缓冲了SnO_xS_y在充放电过程的体积膨胀,保持了结构稳定性,展现了优越的电性能.  相似文献   

10.
采用碳浴焙烧工艺合成出了磷酸铁锂正极材料,并对材料进行了X射线衍射(XRD)、扫描电子显微镜(SEM)表征和恒电流充放电测试. 结果表明,碳浴焙烧工艺可以用于合成晶相好、颗粒细小均匀的LiFePO4,且在0.1C倍率下充放电容量可达120 mAh/g以上.  相似文献   

11.
以TiO2和醋酸锂为原料,采用在乙醇中预分散和在液相体系中熔融浸渍的协同共混技术,实现反应物料间微尺度混合,在较低温度下分段煅烧合成纳米结构钛酸锂.X射线衍射(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)和粒度分布等测试结果表明,产物为尖晶石结构钛酸锂(Li4Ti5O12),平均粒径约为550 nm.以该产物为负极材料组装锂离子电池并测试其电化学性能,结果表明其性能良好,0.1 C倍率下首次充放电比容量高达165 mA.h/g,具有稳定的电压平台,循环性能良好.  相似文献   

12.
目的:制备正极材料Li[Li_0.1Ni_(0.45-x)Mn_(0.45-x)Sn_2x]O_2微米球,并研究其电化学性能与掺杂Sn^2+的物质的量的关系。方法:通过共沉淀法以SnSO_4、Na_2CO_3、MnSO_4?H_2O和NiSO_4?6H_2O为原料,制备前驱物(Ni_(0.45-x)Mn_(0.45-x)Sn_2x)(CO_3)_0.9,与Li_2CO_3充分混合,高温煅烧得到正极材料Li[Li_0.1Ni_(0.45-x)Mn_(0.45-x)Sn_2x]O_2微米球。结果:正极材料的物相用X射线衍射(XRD)进行检测,表观形貌利用扫描电子显微镜(SEM)进行研究,采用恒流充放电测试对电池电化学性能进行分析。结论:添加Sn^2+可以有效提高Li[Li_0.1Ni_(0.45-x)Mn_(0.45-x)Sn_2x]O_2系列锂离子正极材料的电化学性能。  相似文献   

13.
LiNixMn2-xO4对锂离子电池材料LiCoO2的表面改性研究   总被引:1,自引:0,他引:1  
在锂离子电池正极材料LiCoO2表面上修饰LiNixMn2-xO4来改善LiCoO2在循环过程中的容量衰减问题.对所得产物进行了XRD、SEM表征,并进行了充放电容量测试和交流阻抗测试.通过XRD和SEM,发现LiNixMn2-xO4修饰没有改变材料的晶体结构.在电化学性能测试中,由于包覆LiNixMn2-xO4可以减少材料与电解液的直接接触,最大程度地减缓电极材料在电化学循环时结构遭到破坏,在修饰量较小(3 5%)时,该改性方法改善了LiCoO2电极的循环性能,69次循环后放电比容量没有衰减,且大大地提高了平台效率.  相似文献   

14.
采用高温固相法,以环氧树脂为还原剂合成锂离子电池正极材料Li3V2(PO4)3.通过X射线衍射分析和扫描电子显微镜对样品的晶体结构和微观形貌进行表征,并用恒电流充放电和循环伏安实验研究材料的电化学性能.结果表明所制备的Li3V2(PO4)3为结晶完善的单斜结构,颗粒分布均匀且粒径较小,0.2C时在3.0V~4.3V电压范围的首次放电比容量为126.9mAh/g,30次循环后的比容量为126.0mAh/g,容量保持率达到99.29%.  相似文献   

15.
采用共同沉淀和溶液浸渍相结合的方法合成了锂离子二次电池正极材料Li1 xCo0·2Ni0·8O2(0≤x≤0·10)。用粉末X射线衍射(XRD)、扫描电子显微镜(SEM)、电感耦合等离子体-原子发射光谱(ICP-AES)、电化学等方法对生成物进行了元素组成、形貌、物相与结构、充放电循环等分析。分析结果表明所得到的生成物为球形颗粒,粒径大小均匀,其结构为α-NaFeO2型的层状结构,生成物中无杂质相,生成物的首次充放电效率高、比容量高、循环性能好。在2·00mA/cm2电流密度下,首次放电容量可达183mAh/g,50次循环的保持率为93·4%。  相似文献   

16.
用分散电镀进行TiO_2与MnO_2电解共沉积生产EMD—Ti。将以EMD—Ti为正板材料的碱性锌锰电池,在相同条件下,跟I.C.样品及未掺钛的电解二氧化锰样品对比,检测其充放电循环次数及放电累积容量,以此衡量其充放电可逆性能。实验结果表明,用EMD—Ti作为正极材料的碱性锌锰电池,充放电循环次数达92次,未掺钛样品为58次,I.C.No.1样品为57次,说明电解共沉积TiO_2可以改善MnO_2的充放电可逆性能。  相似文献   

17.
以CH_3COONa,Ni(CH_3COO)_2·4H_2O和Mn(CH_3COO)_2·4H_2O为原料,经过溶解、干燥和焙烧,得到产物Na(Ni_(0.5)Mn_(0.5))O_4.利用XRD,SEM对材料进行了结构和形貌的分析,结果显示产物含有少量的NiO相,呈片状形貌,颗粒小于5μm,有一定程度的团聚.对材料进行了不同倍率的充放电性能测试,产物展示了较好的电化学性能,0.1,0.2,0.5,1和5倍率时的放电容量分别为124,121,116.7,110.1和73.8mA·h/g.产物在2.0~4.0V电压区间充放电循环30次后,室温和55℃下的容量保持率分别为94.8%和91.1%,显示具有较好的高温性能,可以作为钠离子电池正极材料.  相似文献   

18.
采用以柠檬酸为配位剂的溶胶-凝胶法制备了复合掺杂Al、Cl两种元素的锂离子电池正极材料LiMn2_xAlxO4_yCly.采用X射线衍射、透射电子显微镜及充放电循环等方法分析研究了不同掺杂量对材料结构、粒径及电化学性能的影响.结果表明,制备的样品具有良好的尖晶石结构,其中LiMn1.9A10.103.9C10.1的高温(55C)循环性能最佳,初始放电比容量为105.2 mAh/g,25次循环后容量仅衰减4.37%.显示Al-Cl复合掺杂能有效的改善尖晶石的高温电化学性能.  相似文献   

19.
用溶胶-凝胶法制备纯相Na_4MnV(PO_4)_3@C材料,对Na_4MnV(PO_4)_3@C进行石墨烯复合,通过降低材料中Mn含量抑制体系的Jahn-Teller效应,并利用恒流充放电方法测试材料的电化学性能.结果表明:Na_4MnV(PO_4)3@C作为钠离子正极材料,在2.5~4.0V下的比容量为105mA·h/g,平均电压为3.6V,30次循环后的容量保持率为63%;复合后的材料在30次循环后,容量保持率为71%;低锰材料Na_(3.5)Mn_(0.5)V_(1.5)(PO_4)_3@C在2.5~4.2V下的比容量为110mA·h/g,50次循环后的容量保持率为90%,材料的容量保持率得到大幅度提高.  相似文献   

20.
以碳酸锂、四氧化三钴为原料,采用高温固相烧结法制备了锂离子电池正极材料L iCo0.95A l0.03Zr0.02O2,用X-射线衍射(XRD)、扫描电镜(SEM)对材料的结构与形貌进行了表征,并组装实际电池测试了材料的电化学性能.研究结果表明,材料的实际电化学可逆容量达142mAh/g,3.6v以上电压放电容量比例达85%,循环性能好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号