首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
基于Li_4Ti_5O_(12)结构,设计双离子取代反应,制备了3种新型锂离子负极材料Li_3Ti_4CrMO_(12)(M=Ni、Ca、Mg),这些取代型负极材料具有与钛酸锂相同的晶体结构.使用球磨、喷雾造粒以及固相合成工艺制备出一次粒子为200~300nm,二次颗粒为多孔球形的新型负极材料Li_3Ti_4CrMO_(12),并对其电化学性能进行了测试.循环充放电试验结果表明,制备的3种材料中,镁铬钛酸锂(Li_3Ti_4CrMgO_(12))具有较高的放电比容量和较好的循环稳定性,0.2C下首次放电比容量达158.6mA·h/g.10次循环后,放电容量为148.1mA·h/g,充电容量为149.1mA·h/g,容量保持率和库伦效率均在99%以上,显示了潜在的应用价值.循环伏安(CV)和电化学阻抗谱(EIS)分析表明,上述优良性能来自于Mg、Cr取代后导致的材料界面电阻的下降.  相似文献   

2.
文章首先采用溶剂热法合成了系列LiMn_(1-x)Fe_xPO_4(x=0.15、0.25、0.35、0.45)微纳颗粒,随后采用热分解的方法对微纳颗粒进行碳包覆处理。采用X射线衍射仪(X-ray diffraction, XRD)和扫描电子显微镜(scanning electron microscope, SEM)对微纳颗粒进行表征,结果可知所获微纳颗粒均为橄榄石结构,而LiMn_(0.75)Fe_(0.25)PO_4/C分散性较好,颗粒大小较均匀。与LiFePO_4/C正极材料相比,LiMn_(0.75)Fe_(0.25)PO_4/C的导电性、放电电压、循环稳定性和储锂性能均有明显提高。LiMn_(0.75)Fe_(0.25)PO_4/C充放电电压平台为4.1 V;在0.5C的电流密度下,首次放电比容量为160 mA·h/g,在100圈循环后容量依然保持在140 mA·h/g;在10C的电流密度下,保持了60 mA·h/g的容量。该文对于研究和发展新型可替代LiFePO_4的锂离子电池正极材料具有重要的意义。  相似文献   

3.
采用固相法合成纯相的Na_2Co_2TeO_6材料.利用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)研究其晶体结构和元素价态,并用恒流充放电测试、倍率及循环伏安测试研究该材料在3.0~0.01 V内的电化学性质和动力学性能.结果表明:Na_2Co_2TeO_6作为电池负极材料具有良好的循环性能,稳定容量为200mA·h/g,充放电效率为95%;该材料具有较好的倍率性能,在电流密度500 mA/g下,仍可保持50 mA·h/g的稳定容量.  相似文献   

4.
采用微反应器法制备前驱体Fe_3(PO_4)_2·8H_2O和Mn_3(PO_4)2·3H_2O磷酸盐材料,并通过固相法制备含C的磷酸铁锂LiFePO_4/C(LFP/C)、磷酸锰锂LiMnPO_4/C(LMP/C)和磷酸锰铁锂LiFe_(0.5)Mn_(0.5)PO_4/C(LFMP/C)以及不含C的磷酸锰铁锂LiFe_(0.5)Mn_(0.5)PO_4(LFMP)4种正极材料。分别采用X线衍射仪(XRD)、拉曼光谱仪(Raman)、扫描电子显微镜(SEM)和电化学测试系统进行样品结构、形貌和电化学性能的表征。结果表明:通过微反应器法控制p H可获得颗粒细小、均匀的纳米磷酸盐前驱体,LFMP/C拥有最高的首次放电比能量526.12W·h/kg,且放电比容量达146.82 mA·h/g,50次循环后容量保持率达94%,电化学性能优异。  相似文献   

5.
将沥青与天然石墨球按不同比例混合,经碳化处理后再进行石墨化得到锂离子电池用复合炭负极材料。研究结果表明:复合炭材料具有较大的平均层间距d002;复合炭材料仍保持类球形形貌;复合炭材料在较大倍率下的循环性能优于天然石墨球,其中在沥青基人造石墨与天然石墨球的质量比为15%的条件下,0.1C(1C=300 mA/g)充放电电流下材料的可逆比容量为343.7 mA·h/g,首次库仑效率为85.4%,1C下可逆比容量为295.4 mA·h/g,达到0.1C时可逆比容量的85.9%;1C倍率下50次循环比容量保持率为91.6%,与天然石墨球相比,复合材料具有更大的锂离子扩散系数。  相似文献   

6.
以CH_3COONa,Ni(CH_3COO)_2·4H_2O和Mn(CH_3COO)_2·4H_2O为原料,经过溶解、干燥和焙烧,得到产物Na(Ni_(0.5)Mn_(0.5))O_4.利用XRD,SEM对材料进行了结构和形貌的分析,结果显示产物含有少量的NiO相,呈片状形貌,颗粒小于5μm,有一定程度的团聚.对材料进行了不同倍率的充放电性能测试,产物展示了较好的电化学性能,0.1,0.2,0.5,1和5倍率时的放电容量分别为124,121,116.7,110.1和73.8mA·h/g.产物在2.0~4.0V电压区间充放电循环30次后,室温和55℃下的容量保持率分别为94.8%和91.1%,显示具有较好的高温性能,可以作为钠离子电池正极材料.  相似文献   

7.
采用微通道反应器-固相烧结法制备纳米级磷酸锰锂(LiMnPO_4)正极材料。通过微反应器将反应溶液快速混合,得到了颗粒较小的前驱体产物Mn_3(PO_4)_2·3H_2O,通过与锂源、碳源球磨混合,固相烧结得到最终产物LiMnPO_4/C。通过X线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)以及恒电流充放电对样品进行表征和电化学性能测试,考察不同煅烧温度对LiMnPO_4/C的颗粒尺寸及电化学性能的影响。结果表明:在650℃条件下制备出的样品具有最小的颗粒尺寸以及最佳的电化学性能,在0.05C(1C=171 m A·h/g)倍率下的首次放电比容量为121 mA·h/g,经20次循环后容量保持率为86.8%。  相似文献   

8.
采用高温固相法合成了可用于锂离子电池负极的斜六方晶系的单晶LiSn_2(PO_4)_3.通过XRD和TEM手段确定了LiSn_2(PO_4)_3的斜六方晶系单晶结构,SEM手段观察得出LiSn_2(PO_4)_3粒径为200-300 nm.相比锡基氧化物纳米颗粒,斜六方晶系的单晶LiSn_2(PO_4)_3电极在充放电过程容量保持率更高.电化学性能测试结果表明,电极在100 m A g-1恒电流密度充放电时,LiSn_2(PO_4)_3电极充放电循环50次后容量保持为301.4 m A h g-1,远高于Sn O2纳米颗粒电极.  相似文献   

9.
以Li2CO3,TiO2为原料,无水乙醇为分散剂,采用高温固相法,通过两步煅烧方式制备出不同煅烧温度下的Li4Ti5O12粉末材料.采用X射线衍射(XRD)、扫描电镜(SEM)表征材料的结构和形貌,采用恒电流充放电、交流阻抗和循环伏安等方法测试材料电化学性能.结果表明:在800 ℃下煅烧6 h后可得到晶型完整的纯相Li4Ti5O12,其颗粒均匀分布在200~400 nm.Li4Ti5O12在0.5C倍率下首次可逆比容量为157.67 mA·h/g,库伦效率为96.1%,经过100次循环充放电后容量保持率为98.63%;在5C倍率下首次可逆比容量为107.0 mA·h/g,经过1 000次循环充放电后容量保持率为84.1%.  相似文献   

10.
采用高能球磨辅助固相法制备碳包覆并掺杂Mn的LiFePO4正极材料LiFe1-xMnxPO4(x=0.04、0.05、0.06和0.07)。通过X线衍射光谱仪(XRD)、场发射扫描电子显微镜(FESEM)、比表面积(BET)及恒流充放电等测试手段考察Mn的掺杂量及碳的包覆量对LiFePO4的结构、形貌及电化学性能的影响,最终确定优化条件。结果表明:Mn掺杂量x=0.06及碳的前驱体(蔗糖)添加量为LiFe0.94Mn0.06PO4质量的2.5%(碳最终质量分数为1.26%)时,所获得的碳包覆和Mn掺杂的LiFePO4正极材料的电化学性能最优异,其0.1C倍率的放电比容量为165.1 mA·h/g,10C倍率的放电比容量仍达92.4 mA·h/g,50次循环后容量保持率分别为96.7%及89.2%。  相似文献   

11.
采用溶胶-凝胶法和化学沉积法制备了Li4Ti4.75Cu0.25O12/SnO2复合活性材料。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌表征及电化学性能测试。结果表明:Li4Ti4.75Cu0.25O12/SnO2复合活性物质能够进一步改善倍率性能的同时,循环性能也得到了很好的保证。当电压在1~3 V时,电流密度为1C倍率条件下,Li4Ti4.75Cu0.25O12/SnO2复合材料首次放电比容量高达202.55 m A·h/g。经过50次循环后,容量仍保持在202.51 m A·h/g,容量保持率高达99.98%。  相似文献   

12.
钒酸锂作为锂离子电池负极材料,因具有比碳材料更高的安全性能和比钛酸锂材料更高的能量密度,成为近年来的研究热点,但导电性能差是限制其应用的主要瓶颈。为了改善钒酸锂材料的导电性,提高其比容量和倍率性能,设计构筑了具有三维结构的Li_3VO_4/RGO(还原氧化石墨烯)复合负极材料。结果表明,RGO可以抑制Li_3VO_4颗粒的团聚,典型产物中Li_3VO_4颗粒粒径为50~200nm,均匀地分散在RGO的表面,与RGO形成良好的三维网络结构。600℃煅烧后的样品(Li_3VO_4/RGO-600)在0.5C的电流密度下首次放电比容量达到495.6(mA·h)/g,100次循环后保有365.9(mA·h)/g;在10C的电流密度下,放电比容量仍可保持332.9(mA·h)/g。  相似文献   

13.
3V锂离子电池用层状α-Na0.67MnO2.26的电化学性能   总被引:1,自引:0,他引:1  
以Mn(CH3COO)2·4H2O和Na2CO3为原料,通过sol-gel技术合成前驱体,在600℃焙烧前驱体得到一种新的无水层状α-Na0.67MnO2.26材料.用等离子体光谱、X射线衍射仪、扫描电镜、恒流充放电和循环伏安(CV)等对产物的结构、组成、形貌及电化学性能进行研究.结果表明:得到的样品为稳定的六方层状P2结构,且颗粒细小;该样品在充放电电流密度为25 mA/g和电压为2.0~4.3 V时,首次充电比容量为188 mA·h/g,第2次放电比容量为176 mA·h/g,充放电库仑效率高达94%;在电压为2.0~4.3 V,电流密度为25,50,125和250 mA/g充放电条件下,其第2次放电比容量分别为176,168,139和110 mA·h/g,40次循环后,其放电比容量分别为150,142,121和105 mA·h/g,显示材料有较好的循环稳定性和大电流充放电性能.  相似文献   

14.
以乙二醇为溶剂,尿素为添加剂,采用溶剂热法制备锂离子电池正极材料磷酸铁锂(LiFePO4)。采用XRD,BET,SEM和TEM等对产物的结构和形貌进行表征,运用恒流充放电测试对LiFePO4/C复合材料的电化学性能进行研究。研究结果表明:花状分级结构的LiFePO4由单晶纳米片组成,且具有开放多孔的特性,其单分散性良好,粒径约为8μm,振实密度达1.2g/cm3。LiFePO4/C样品的首次放电比容量达152.4mA·h/g;在0.2C,1C和2C倍率下比容量分别为134.3,118.5和103.7mA·h/g;当放电倍率为2C时,经过5个循环后,容量保持在100.1mA·h/g,容量保持率为96.7%。  相似文献   

15.
采用Hummers法和熔融扩散法结合的方法制备了氧化石墨烯@硫(GO@S)复合正极材料,研究了此复合正极对锂硫电池电化学性能的影响.测试结果表明,GO@S复合正极大幅度提高了电池的比容量、有效改善了电池的倍率性能和循环稳定性.在0.1 C倍率下,初始放电容量高达1 044 mA·h/g;0.5 C倍率下经过100次的充放电循环后,库伦效率为96%,容量保持率为78.5%.  相似文献   

16.
采用液相无焰燃烧法在500℃反应1 h,然后在600℃二次焙烧3、6、9 h和12 h制备了尖晶石型Li1.05Ni0.05Mn1.90O4正极材料.结果表明,不同二次焙烧时间制备的Li-Ni复合共掺材料没有改变LiMn2O4的尖晶石结构,随着焙烧时间的增加,颗粒尺寸增大,结晶性提高.二次焙烧时间为9 h的Li1.05Ni0.05Mn1.90O4样品的颗粒尺寸约为70~100 nm,具有优异的电化学性能,在1 C(1 C=148 mA·h·g-1)倍率,初始放电比容量为94.8 mA·h·g-1,400次循环后展现出72.15%的容量保持率;在5 C下初始放电比容量可达到89.7 mA·h·g-1,800次循环后,仍能维持70.79%的容量保持率.并且具有较小的电荷转移电阻和较低的表观活化能.Li-Ni复...  相似文献   

17.
采用高温固相法,以环氧树脂为还原剂合成锂离子电池正极材料Li3V2(PO4)3.通过X射线衍射分析和扫描电子显微镜对样品的晶体结构和微观形貌进行表征,并用恒电流充放电和循环伏安实验研究材料的电化学性能.结果表明所制备的Li3V2(PO4)3为结晶完善的单斜结构,颗粒分布均匀且粒径较小,0.2C时在3.0V~4.3V电压范围的首次放电比容量为126.9mAh/g,30次循环后的比容量为126.0mAh/g,容量保持率达到99.29%.  相似文献   

18.
通过共沉淀-高温固相法合成Li_(1.5)Ni_(0.25)Mn_(0.75)O_(2.5)固溶体正极材料,并通过溶液法对其进行LiAlO2包覆。采用X线衍射(XRD)、扫描电镜(SEM)、透视电镜(TEM)、电化学交流阻抗谱(EIS)和恒电流充放电测试分析样品的结构、形貌及电化学性能。研究结果表明:包覆前后样品都具备α-NaFeO2型层状结构;包覆后,Li_(1.5)Ni_(0.25)Mn_(0.75)O_(2.5)的循环稳定性和倍率性能都得到显著提高。包覆量为5%(质量分数)的样品性能最优。首次放电比容量为254.64mA·h/g。50次循环后,容量保持率由84.5%提高至98.9%。当倍率为10C时,包覆样品的放电比容量可达58.29mA·h/g,而未包覆仅为15.27mA·h/g。包覆5%LiAlO2的Li_(1.5)Ni_(0.25)Mn_(0.75)O_(2.5)正极材料具有最小的电荷转移阻抗。  相似文献   

19.
以Li4Ti5O12,Ni(NO3)2·6H2O和NH4HCO3为原料,采用化学沉积法与热分解法相结合制备一系列Li4Ti5O12/NiO复合材料.通过X线衍射仪、扫描电镜和X线能谱仪对所得材料进行物理结构、形貌和成分分析,采用恒流充放电和循环伏安测试研究材料的电化学性能.结果表明,Li4Ti5O12/NiO (5%)复合材料具有最佳的循环可逆性能,适量的NiO可有效改善材料的电化学性能.在2.5~0.1 V的电压范围和30 mA/g的电流密度下,30次循环后,Li4Ti5O12/NiO(5%)复合材料具有最佳的放电比容量为228.3 mA·h/g,与Li4Ti5O12相比,提高了23.8 mA·h/g;Li4Ti5O12/NiO(5%)复合材料中的NiO没有阻碍电极反应中锂离子的迁移,且提高了Li4Ti5O12电极材料的电导率,降低了电极的极化.  相似文献   

20.
采用一步碳热还原法,以一种有机碳源为碳前驱体合成了单斜晶系的Li3V2(PO4)3/C复合材料. 主要研究了合成温度对材料性能的影响. 结果表明: 750~850 ℃时可以获得纯相的正极材料Li3V2(PO4)3;同时首次放电容量达到161 mAh/g;经过50次循环后,750 ℃下的容量保持率仍为83%,表明材料具有良好的循环稳定性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号