首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
用一种改进的氢氧化物共沉淀法制备了粒径均一、近球形的Mn0.4Ni0.4Co0.2(OH)2, 再通过高温固相合成法制备了高密度的LiMn0.4Ni0.4Co0.2O2正极材料。结果表明,在沉 淀体系中加入F-,可以在较为宽松的条件下制备出振实密度为2.3g·cm-3的LiMn0.4Ni0.4Co0.2O2正极材料。对产物进行了XRD、SEM和充放电测试。SEM测试结果表明,产物具有良好的形貌; XRD测试表明,产物具有良好的层状结构,无杂质相存在。在充放电电压区间为3.0~4.4V,电流密度为30mA·g-1时,首次充电和放电容量分别为185和164mAh·g-1,经过50次循环,放电容量仍能保持90%。  相似文献   

2.
以无水乙醇为溶剂,醋酸锂、钛酸丁酯和石墨为原料,采用湿法制备了Li4Ti5O12/石墨复合材料.采用X-射线衍射、红外光谱、扫描电镜和电化学测试等对合成产物进行了表征.结果表明:600 ℃氩气气氛中煅烧6 h可制得碳质量分数5%左右的Li4Ti5O12/石墨复合材料,其可逆容量达到167.1 mAh·g-1;经80次循环后,0.1C放电时,容量保持率为99.0%,2.0 C放电时容量保持率达到105.1%.与纯Li4Ti5O12相比,Li4Ti5O12/石墨复合材料具有更好的循环性能和倍率性能,是一种优良的锂离子电池负极材料.  相似文献   

3.
采用溶胶凝胶法制备合成富锂锰基正极材料Li1.2Ni0.2Mn0.6O2,在前期配制金属离子溶液时,通过添加不同量的葡萄糖(葡萄糖添加量分别为试剂总质量的0,6%,12%,36%,48%)来分析其对Li1.2Ni0.2Mn0.6O2的结构、形貌、电化学性能以及倍率性能的影响.恒流充放电测试结果显示,少量葡萄糖(6%,12%)加入,可以明显提高材料首次放电比容量.0.05C首次放电比容量由未加入葡萄糖材料的174 mAh/g提升至添加12%葡萄糖材料的265.9 mAh/g.倍率性能测试结果显示,葡萄糖的加入可以明显提高材料倍率性能.其中葡萄糖添加量为48%的材料倍率性能最好,首次放电比容量达到141 mAh/g,经过0.05C,0.1C,0.2C,0.5C,1C循环测试后再进行0.1C循环测试30次,放电比容量为110 mAh/g,容量保持率为78%.  相似文献   

4.
以Li2CO3,TiO2为原料,无水乙醇为分散剂,采用高温固相法,通过两步煅烧方式制备出不同煅烧温度下的Li4Ti5O12粉末材料.采用X射线衍射(XRD)、扫描电镜(SEM)表征材料的结构和形貌,采用恒电流充放电、交流阻抗和循环伏安等方法测试材料电化学性能.结果表明:在800 ℃下煅烧6 h后可得到晶型完整的纯相Li4Ti5O12,其颗粒均匀分布在200~400 nm.Li4Ti5O12在0.5C倍率下首次可逆比容量为157.67 mA·h/g,库伦效率为96.1%,经过100次循环充放电后容量保持率为98.63%;在5C倍率下首次可逆比容量为107.0 mA·h/g,经过1 000次循环充放电后容量保持率为84.1%.  相似文献   

5.
立方尖晶石结构的Li2ZnTi3O8(LZTO)具有成本低和安全性高的优势,被认为是代替碳材料作为锂离子电池负极材料的理想选择。然而,Li+和Zn2+离子位于LZTO的四面体位点,在一定程度上阻碍了离子的迁移,导致LZTO电导率差,锂离子扩散系数低。LiAlO2的包覆有效避免了电极表面与有机电解质的接触,从而减少了副反应的发生。因此,本文采用简单的高温固相法合成了Li2ZnTi3O8@LiAlO2复合材料。结果表明:LiAlO2改性未改变LZTO的形貌和粒径,但是提高了其结构稳定性、锂离子脱嵌的可逆性和电化学活性,促进了锂离子的迁移。Li2ZnTi3O8@LiAlO2 (8wt%)在0.5 C、1 C、2 C、3 C和5 C时的充电容量分别为203.9、194.8、187.4、180.6和177.1 mAh·g?1,表现出良好的倍率性能。然而,在相同的倍率下,纯LZTO仅有134.5、109.7、89.4、79.9和72.9 mAh·g?1的容量。即使在较大的充放电倍率下,Li2ZnTi3O8@LiAlO2(8wt%)材料也表现出良好的循环性能。在5 C倍率循环150次后后,Li2ZnTi3O8@LiAlO2(8wt%)仍具有263.5/265.8 mAh·g?1的充放电容量。LiAlO2的引入增强了LZTO材料的电子导电性,使Li2ZnTi3O8@LiAlO2复合材料具有优异的电化学性能。  相似文献   

6.
基于CaCO3模板法制备出具有三维分级多孔碳骨架结构SnO2@voids@C-SnO材料,并通过溶胶凝胶法进行Ni的添加.利用XRD和SEM对所得产物的晶体结构和微观形貌进行表征,并对电池进行电化学性能测试.结果表明,SnO2@voids@C-SnO材料在电流密度50 mA·g-1时首次放电比容量为1 092 mAh·g-1.添加Ni可以有效增加负极材料的比容量.当Ni质量分数达到25%时,材料的首次放电比容量达到1 414.6 mAh·g-1,70次循环后的放电比容量仍能保持617 mAh·g-1,倍率性能优良.这主要是因为Ni的添加在一定程度上避免了纳米粒子的团聚,缓解了体积膨胀带来的影响,明显改善了负极材料的电化学性能.  相似文献   

7.
在电化学过程中Mg2Ni储氢合金表面极易形成钝化层,这是降低合金电极储氢动力学和放电容量的主要原因。本研究中以Zn元素替代Ni熔炼制备了Mg2Ni0.75Zn0.25合金,分析Zn元素在碱性溶液中的溶解对合金电极放电容量的影响机制。结果表明:Mg2Ni合金的主相为Mg2Ni,而添加Zn的Mg2Ni0.75Zn0.25合金中形成了新的物相MgZn2。电化学反应后,Mg2Ni合金表面被钝化层覆盖导致合金电极放电容量很低(为16.96 mA·h/g),而Mg2Ni0.75Zn0.25合金晶界处出现了许多Zn溶解后形成的凹槽和裂纹,其合金电极最大放电容量达到了52.22 mA·h/g。可以推断,在电化学过程中Zn和MgZn2的溶解和脱落降低了Mg2...  相似文献   

8.
尖晶石型LiMn2O4正极材料的电压平台高、原料来源丰富、生产成本低廉,但由于Jahn-Teller效应导致晶格畸变和Mn3+歧化分解导致过渡金属锰的溶解严重影响电池的循环性能。本文探究了不同Mg2+掺杂量对LiMn2O4正极材料电化学性能的影响。采用高温固相法制备了LiMg((x))Mn((2-x))O4(x=0,0.01,0.03,0.05)样品,并对其组织结构和电化学性能进行分析。结果表明,所有样品均为立方尖晶石结构,呈截断八面体形貌。电化学性能测试表明,当x=0.03时,LiMg0.03Mn1.97O4样品在0.2 C下具有较高的放电比容量和最高的首次库伦效率(98.44%),循环稳定性最佳;在0.5 C下循环100圈后仍具有119.3 mAh/g的放电比容量,容量保持率高达92.62%。  相似文献   

9.
通过简单的水热结合退火的方式合成了MoS2/C/MXene复合材料,其中MoS2为1T晶型。MoS2/C纳米片均匀地生长在MXene薄片上,呈现出独特的多孔异质结构,这种结构不仅有效抑制了MXene薄片的重新堆积,还缓解了MoS2充放电过程中的体积膨胀。无序碳的引入提高了复合材料的导电性,并使MoS2的晶型从2H转变为1T。将MoS2/C/MXene复合材料作为锂离子电池负极材料,表现出优秀的循环性能。在1 A·g-1的电流密度下循环1 000次后拥有574.2 mA·h·g-1的比容量。这项研究为制备具有良好电化学性能的锂离子电池负极材料提供了一种设计策略。  相似文献   

10.
以3,4,9,10-二萘嵌苯(PTCDA)为原料成功合成聚萘(PPN),然后利用硫代硫酸钠为硫源,通过化学还原法制备聚萘/硫(PPN/S)复合材料,接着在PPN/S外表面包覆一层二氧化钛(TiO2),最后制备出二氧化钛-聚萘/硫(TiO2-PPN/S)复合材料.采用扫描电镜、X-射线衍射和热重分析对复合材料TiO2-PPN/S进行表征; 采用充放电测试系统和电化学工作站对TiO2-PPN/S电极的电化学性能进行测试.结果表明:PPN/S复合材料表面被TiO2成功包覆,制得一种新型TiO2-PPN/S复合材料; TiO2-PPN/S电极具有良好的循环稳定性,在电流密度为400 mA·g-1时,首次放电容量达到1 334.8 mA·h·g-1,循环150次后,放电容量仍保持在691.4 mA·g-1; 与含硫量相当的PPN/S电极相比,TiO2-PPN/S电极具有更佳的电化学性能.  相似文献   

11.
采用PVC粘合成型技术对实验室合成的Li4Mn5O12粉体进行成型,制备出直径约为3.5mm的球形PVC-Li4Mn5O12复合材料,并通过SEM、孔径分布、吸附动力学和选择性测试等手段研究成型前后离子筛的形貌和吸附性能。结果表明:PVC-Li4Mn5O12复合样品中的离子筛仍为纳米棒;且球形离子筛具有较大的比表面积,在模拟卤水中对Li+具有良好的选择性吸附性能。  相似文献   

12.
用水热法制备Li4Ti5O12@TiO2复合材料与同样方法制备的尖晶石型Li4Ti5O12进行对比.对2种材料采用扫描电子显微镜、X射线衍射仪、光电子能谱仪(XPS)进行表征;N2吸附-脱附曲线进行比表面积分析;恒电流充放电测试和电化学交流阻抗(EIS)技术进行电化学性能分析.结果表明Li4Ti5O12@TiO2和Li4Ti5O12均呈颗粒状,粒径分别约为50和70 nm.XPS分析显示Li4Ti5O12@TiO2中的Ti为+4价态.电化学测试结果显示Li4Ti5O12复合了锐钛型TiO2...  相似文献   

13.
用碳酸盐同沉淀法合成了LiNi1/3Mn1/3Co1/3O2正极材料,采用XRD(X7-Ray Diffraction)、SEM (Scanning Electron Microscope)、差分计时电位法和充放电循环等对材料的物理化学性质及电化学性能进行了测试分析。XRD分析表明在合成温度为800℃或更高时,所合成的产物均为α-NaFeO2型的层状结构,SEM分析表明在合成温 度为800或850℃时,产物为微小晶粒团聚成的球形颗粒,合成温度为900℃以上时,产物颗粒发生破碎,形状不规则。950℃合成的LiNi1/3Mn1/3Co1/3O2材料在2.5~4.4V电位区间内, 首次放电容量为162 mAh·g-1, 并具有良好的循环性能。随着充放电电压的升高,首次不可逆放电容量增大, 循环稳定性减弱。在低温(800, 850℃)下合成的LiNi1/3Mn1/3Co1/3O2材料与高温下(900, 950℃)得到的材料性能有很大差别,这是由于在高温和低温下得到材料的结构差别所造成的。  相似文献   

14.
富锂材料虽然具有超高的比容量,但由于氧的氧化还原不完全可逆,因此会出现电压衰减和结构不稳定的现象。本文首次采用分布共沉淀的方法以通过控制过渡金属元素的分布来实现对两相分布的调控。经过检测发现成功的增加了颗粒内部中LiMO2(M = Ni、Co、Mn)相的含量以及颗粒表面Li2MnO3相的含量,并在表面形成了Li4Mn5O12尖晶石相。这使得材料表现出优异的电化学性能:LR(原始)在 1 C 500 圈循环后的放电比容量为 72.7 mAh?g?1,而GR(改性样品)的放电比容量仍为 137.5 mAh?g?1。在1 C循环220圈后,GR 的放电中压仍然保持在3 V以上。因此,通过调节两相的局部状态可以有效地稳定材料结构和抑制电压衰减。  相似文献   

15.
通过水热处理及电化学沉积,在集流体泡沫镍上原位生长出NiCo2O4@PANI复合材料.通过扫描电镜观察到泡沫镍上均匀分布着表面粗糙的纳米棒阵列,这种结构有利于电极材料与电解液的充分接触与反应;PANI(聚苯胺)的包覆增加了NiCo2O4的导电性,降低了载流子传输的活化能,因而表现出优异的电化学性能.在1 mA·cm-2的电流密度下,复合材料的比电容为2 307.15 F·g-1.当电流密度提升到20 mA·cm-2后,比电容的保留率为78.13%.在10 mA·cm-2电流密度下,循环2 000次后,比电容保留率为85.46%.测试结果证明该复合材料作为电极材料,在超级电容器的应用中有着巨大的潜力.  相似文献   

16.
采用自蔓延燃烧法制备钕离子掺杂锰酸锂(LiMn1.99Nd0.01O4)纳米颗粒,通过XRD、SEM、CV等表征分析了材料的晶体结构、微观形貌和电化学性能.结果表明:钕离子掺杂不影响晶体结构,但可减小LiMn2O4颗粒粒径,进而提高其电化学性能.在0.2C倍率下的放电比容量高达125.6 mAh·g-1.在1C倍率下的首次放电容量为118.4 mAh·g-1,循环100次后的放电比容量为110.4 mAh·g-1,容量保持率为93.2%.  相似文献   

17.
采用共同沉淀和溶液浸渍相结合的方法合成了锂离子二次电池正极材料Li1+xCo0.2Ni0.8O2(0≤x≤0.10)。用粉末X射线衍射(XRD)、扫描电子显微镜(SEM)、电感耦合等离子体-原子发射光谱(ICP-AES)、电化学等方法对生成物进行了元素组成、形貌、物相与结构、充放电循环等分析。分析结果表明所得到的生成物为球形颗粒,粒径大小均匀,其结构为αNaFeO2型的层状结构, 生成物中无杂质相, 生成物的首次充放电效率高、比容量高、循环性能好。在2.00mA/cm2电流密度下,首次放电容量可达183mAh/g, 50次循环的保持率为3.4%。  相似文献   

18.
为了提高LiFePO4正极材料的离子导电性,采用液相共沉淀法与碳热还原法制备一系列质量配比的LiFePO4/Li3V2(PO4)3复合材料,通过X-射线衍射、扫描电镜、恒流充放电测试仪等分析测试手段测试样品。研究发现,m(LiFePO4):m(Li3V2(PO4)3)=6:4时复合材料形貌较为规则且结晶度较高,在0.1C,1.0C,2.0C,5.0C,10.0C倍率下放电比容量可达148,136,130.5 ,121.5,112.3 mA·h·g-1,1C倍率下循环100次容量保持率仍可达98.5%,有效地解决了LiFePO4离子电导率低的问题,推动了该复合正极材料在动力型锂离子电池中的应用。  相似文献   

19.
为了提高LiFePO4正极材料的离子导电性,采用液相共沉淀法与碳热还原法制备一系列质量配比的LiFePO4/Li3V2(PO4)3复合材料,通过X-射线衍射、扫描电镜、恒流充放电测试仪等分析测试手段测试样品。研究发现,m(LiFePO4):m(Li3V2(PO4)3)=6:4时复合材料形貌较为规则且结晶度较高,在0.1C,1.0C,2.0C,5.0C,10.0C倍率下放电比容量可达148,136,130.5 ,121.5,112.3 mA·h·g-1,1C倍率下循环100次容量保持率仍可达98.5%,有效地解决了LiFePO4离子电导率低的问题,推动了该复合正极材料在动力型锂离子电池中的应用。  相似文献   

20.
采用原位氧化-刻蚀法和水热合成法制备了多孔MXene复合材料(Ti3C2Tx/SnSe),并对所制备的材料进行了结构表征与电化学性能测试. 结果表明:在0.05 A/g的电流密度下,多孔Ti3C2Tx/SnSe电极具有381.9 mA ·h/g的储钾容量,而相同情况下SnSe电极的比容量仅为119.2 mA ·h/g. 在1 A/g的电流密度下,多孔Ti3C2Tx /SnSe电极的初始可逆比容量为118.5 mA ·h/g,循环500次的比容量仍保持在35.4 mA ·h/g. 多孔Ti3C2Tx/SnSe电极材料优异的电化学性能得益于多孔Ti3C2Tx材料的高导电性,它不仅缓解了SnSe的体积膨胀,而且为离子的转移提供了良好的通路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号