首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了避免车辆发生横向失稳的风险,根据四轮独立驱动电动汽车四轮驱动/制动力矩独立可控的特点,提出了一种具有上层控制器和下层控制器两层结构的模糊滑模直接横摆力矩控制策略。上层控制器采用模糊滑模控制器计算车辆总的需求横摆力矩,并对4个车轮纵向力进行分配。下层控制器将轮胎纵向力转化为对轮胎滑动率的控制,并通过控制4个车轮的力矩使轮胎纵向力得到实现。仿真结果表明,该模糊滑模直接横摆力矩控制策略在不同的附着路面条件下都能保证车辆的横向稳定性,并能削弱传统滑模控制器造成的系统抖振。  相似文献   

2.
针对分布式驱动电动汽车各车轮电机力矩和液压制动力矩可独立控制的特点,以操纵稳定性为目标,设计电机与液压制动复合分配的控制策略.控制策略采用分层控制的结构,上层运动控制器根据驾驶员输入和车辆状态的反馈求取广义力,下层控制分配器在执行器约束及速度约束下,考虑轮胎纵侧耦合特性对横摆转矩的影响,采用二次规划法进行转矩分配,实现车辆的稳定性控制效果.最后利用CARSIM和MATLAB软件对电液复合算法进行了联合仿真,并进行了实车试验来验证算法,最终的仿真和试验结果表明复合分配控制策略的控制效果相对仅用电机控制时要好,提高了车辆的稳定性控制效果.  相似文献   

3.
根据四轮独立驱动电动汽车驱动力独立可控的特点,采用分层控制分配方法,优化整车综合性能.控制器根据传感器信号判定车辆的行驶状态,并计算出车辆所需总驱动力矩,然后优化分配各驱动轮上的驱动力矩,同时考虑地面附着条件和驱动电机的约束条件.仿真结果表明:采用分层控制分配方法,充分利用了垂直载荷较大的车轮的附着力,有效控制了垂直载荷较小的车轮的滑转,提高了车辆的综合性能.  相似文献   

4.
根据四轮独立驱动电动汽车驱动力独立可控的特点,采用分层控制分配方法,优化整车综合性能.控制器根据传感器信号判定车辆的行驶状态,并计算出车辆所需总驱动力矩,然后优化分配各驱动轮上的驱动力矩,同时考虑地面附着条件和驱动电机的约束条件.仿真结果表明:采用分层控制分配方法,充分利用了垂直载荷较大的车轮的附着力,有效控制了垂直载荷较小的车轮的滑转,提高了车辆的综合性能.  相似文献   

5.
为了提高轮毂电机驱动汽车的纵横向稳定性,将汽车的横摆控制和防滑控制相结合,采用分层控制架构搭建纵向和横向稳定性联合控制模型.上层为力矩决策层.基于比例-积分-微分(PID)控制算法构建车辆纵向车速跟踪控制器;基于模糊P ID控制算法搭建驱动防滑控制器,采用前馈加反馈的控制方法决策出驱动防滑力矩;基于二阶滑模控制算法建立直接横摆力矩控制器,设计附加横摆力矩加权模块控制汽车的横摆特性.下层为力矩分配层.采用优化分配算法将上层决策出的总纵向力矩、驱动防滑力矩和直接横摆力矩合理地分配到4个车轮上.通过加速和转向联合仿真工况验证设计的纵横向稳定性控制策略的有效性.研究结果表明:车轮最大滑转率为0.17,横摆角速度最大偏差值为0.01 rad/s,质心侧偏角最大偏差值为0.011 rad,验证了控制算法的有效性.  相似文献   

6.
针对四轮独立转向四轮独立驱动电动汽车的操纵稳定性问题,提出了一种基于主动后轮转向(ARS)和直接横摆力矩控制(DYC)的集成控制策略.采用变传动比参考模型,通过基于滑模变结构设计的ARS控制器和非线性DYC控制器,对轮胎线性区域内的控制不足进行弥补,提升车辆非线性范围的操纵性能.对双移线工况进行了测试.结果表明:集成控制器优于ARS控制器和DYC控制器,能够有效提升车辆操纵稳定性以及降低横摆力矩需求,提高了车辆的纵向稳定裕度,集成控制是有效的.  相似文献   

7.
为了提高控制策略鲁棒性和驱动电机效率,首先建立了分布式驱动电动汽车七自由度动力学模型,然后基于鲁棒控制理论,设计了基于状态观测的H∞车辆稳定性控制器。借助分布式驱动电动汽车每个车轮均能独立控制的特点,将差动制动与差动驱动相结合,提出了基于直接横摆力矩的转矩分配控制策略。通过变道典型工况进行了数值仿真,结果表明,所提出的基于转矩分配的横向稳定性控制策略能很好地改善车辆横向稳定性,且能减小车轮输出转矩,将车轮滑移率控制在较低范围内。  相似文献   

8.
针对四轮驱动电动汽车力矩分配问题,提出了一种考虑轮胎滑移能量的四轮驱动电动汽车控制结构与力矩分配方法.该方法将高级底盘控制HCC结构与最优控制相结合,在HCC结构的基础上,将车辆侧向力的控制从HCC结构中分离,通过最优控制车辆主动前轮转向和直接横摆力矩来实现车辆的稳定行驶.提出了一种适用于HCC结构的增量型最小化滑移能量力矩分配方法,并基于UniTire滑移能量模型进行了相关的动力学仿真.结果表明在不控制前轮转向和横摆力矩的情况下车辆是失稳的,而采用文中所提结构结合最小化轮胎负荷率或最小化轮胎滑移能量是可以保证车辆侧向稳定的.   相似文献   

9.
四轮轮毂电机驱动电动汽车扭矩分配控制   总被引:20,自引:1,他引:19  
根据四轮轮毂电机驱动电动汽车驱动刷动力矩独立可控的特点,采用层次化结构的控制分配方法,优化分配驱/制动扭矩来提高车辆的操纵稳定性.控制器由运动控制器和控制分配器组成,其中运动控制器根据车辆状态产生所需总横摆力矩,控制分配器优化分配各轮上的驱/制动扭矩,同时考虑了各种执行器的约束条件.仿真结果表明:采用层次化结构的控制分配方法充分利用了垂直载荷较大的轮胎摩擦圆,降低了总的轮胎利用率,提高车辆的操纵稳定性.与平均分配的方法相比,稳定性控制效果更佳.  相似文献   

10.
采用横摆力矩优化分配方法的车辆稳定性控制系统   总被引:1,自引:0,他引:1  
为提高车辆的操纵稳定性,设计了采用横摆力矩优化分配方法的车辆稳定性控制系统。控制系统的上层采用基于最优理论的横摆力矩控制器,该控制器根据校正横摆力矩来计算目标控制车轮的参考滑移率;下层是PID控制器,它跟踪上层控制器的参考滑移率,对目标车轮施加制动力矩从而使车辆稳定。采用八自由度非线性车辆模型在不同工况下进行仿真,结果表明所设计的控制系统能够有效地改善车辆的操纵稳定性。  相似文献   

11.
针对4WID车辆主动安全控制,设计开发了一种基于主动前轮转向(active front steering,AFS)、直接横摆力矩控制(direct yaw-moment control,DYC)与驱动防滑(acceleration slip regulation,ASR)集成的控制系统.控制系统采用分层控制结构,其中决策层基于滑模变结构控制理论与车辆相平面稳定判据,设计了横摆角速度与质心侧偏角协调控制器,计算保持车辆稳定性所需的附加横摆力矩.此外,基于滑移率门限值,设计了模糊PI控制器,分配AFS模块与DYC模块输入的附加横摆力矩,获得最终附加横摆力矩与附加前轮转角.执行层通过对驱动/制动力矩与前轮转角的控制,实现速度保持,滑移率控制与车辆稳定性控制功能.仿真结果表明,在高速、低附着系数路面的极限工况下,集成控制策略可实现车辆操纵稳定性控制且综合性能优于单独控制.  相似文献   

12.
为提高后轮独立驱动电动汽车的横摆稳定性,提出以车辆的横摆角速度和质心侧偏角为控制变量,以驱动轮的驱动力为执行力,包括横摆力矩决策层和转矩分配层两部分的直接横摆力矩控制策略。其中控制策略的上层运用滑模控制理论,下层采用优化控制理论,既能保证非线性系统的控制精度,也能保证其响应速度。运用车辆系统动力学建立了包括线性车辆参考模型和非线性车辆计算模型的简化车辆动力学模型,搭建了Matlab/Simulink-Carsim联合仿真平台,利用蛇形试验工况和双移线试验工况对该文提出的控制策略进行了仿真验证。最后,利用AD5435半实物仿真平台搭建了纯电动汽车硬件在环试验平台,验证了该文控制策略的控制效果。结果表明,所提出的控制策略能够保证车辆横摆稳定性,同时避免了以制动力作为横摆力矩执行力时因纵向车速降低带来的行驶安全性问题。  相似文献   

13.
分布式电驱动汽车驱动力矩优化控制分配   总被引:2,自引:2,他引:0  
针对分布式电驱动汽车在加速转向行车工况下车轮驱动力矩的控制分配问题,提出一种具有分层结构的控制策略.在控制策略的上层,为提高控制器对参数不确定和模型误差的鲁棒性,基于滑模控制进行主动横摆力矩计算.在控制策略的下层,构建了以提高车辆操纵性、降低电能损失为目标的优化问题,并基于离线计算和在线优化相结合的方式进行求解.采用Matlab-Carsim联合仿真,验证了控制策略在提高车辆操纵性能、降低能耗上的有效性.   相似文献   

14.
对带有线控制动系统(brake by wire,BBW)的车辆进行研究,提出了一种横摆稳定性优化控制策略.以二自由度单轨车辆模型为参考模型,利用比例-积分(proportionalintegral,PI)控制算法求出附加横摆力矩.由所计算出的车辆附加横摆力矩、方向盘转角来识别驾驶员转向意图和车辆实际行驶特性,通过广义逆法和数学归划法相结合的方法将附加横摆力矩分配到作用车轮上,由线控制动系统采用主缸定频调压法对各轮缸的目标液压力进行跟踪控制.硬件在环试验结果表明,该控制策略能够有效地保证车辆在高附和低附路面工况下的横摆稳定性.  相似文献   

15.
基于分布式驱动电动汽车具有各轮转矩可单独控制的特点,利用最优转矩分配方法提出其在危险工况下的稳定性控制算法.该算法分为稳定性判断与横摆力矩控制模块、滑移率计算与控制模块及各轮驱动力矩分配模块.稳定性判断与横摆力矩控制模块确定车辆稳定性状态,滑模变结构控制方法用于跟踪理想横摆角速度,输出期望的横摆力矩,确保非线性系统在受到外界干扰时保持稳定;滑移率计算与控制模块计算各轮的滑移状态,通过滑模变结构控制的方法进行各轮滑移率的控制;驱动力矩分配模块综合考虑轮胎力、地面附着等因素,根据横摆控制和滑移率控制的需求,分配各轮驱动力矩.利用联合仿真进行工况验证,结果表明:与各轮力矩平均分配算法相比,所提的力矩分配算法具有更优良的稳定控制效果.  相似文献   

16.
分布式驱动电动汽车稳定性分层控制策略研究   总被引:2,自引:2,他引:0  
提出一种分布式驱动电动汽车行驶稳定性分层控制策略. 策略分为基于滑模控制的广义力矩计算层、基于二次规划的滑移率决策层和基于ABS/ASR的滑移率追踪层. 搭建包括双电机独立驱动系统在内的硬件在环仿真平台,进行了分布式驱动电动汽车典型行驶工况的仿真. 与传统车辆稳定性控制策略的对比发现,文中提出的策略能够在对纵向车速影响较小的前提下,提高车辆操纵稳定性,在部分执行器失效时仍能确保车辆的行驶安全.   相似文献   

17.
针对分布式独立转向系统存在的转角分配问题,阐述了分布式转向的系统结构和工作原理,并基于阿克曼转向定理,同时考虑前轮轮胎侧偏,推导出适合前轮独立转向(2WIS)和四轮独立转向(4WIS)的转角分配算法,研究了该算法对车辆轮胎磨损情况和行驶稳定性的优化效果;利用线性二自由度汽车模型,得出轮胎侧偏角与车速、横摆角速度及车轮转角之间的关系,并利用得出的轮胎侧偏角对阿克曼转向定理进行修正,得出各车轮的转角分配关系;最后,通过Carsim-Simulink联合仿真来验证该转角分配方法的正确性,通过评价轮胎侧向力的优化情况来确定轮胎磨损的改善状况,通过质心侧偏角来评价车辆的行驶稳定性.仿真结果表明,所提出的转角分配方法对于改善轮胎磨损情况和提高车辆行驶稳定性具有很好的效果.  相似文献   

18.
针对四轮独立驱动电动汽车转向稳定性的横摆力矩控制问题,建立了七自由度整车模型和Dugoff轮胎模型.基于滑模控制理论,选择质心侧偏角和横摆角速度两者为联合控制变量,并以汽车车速和路面附着系数为输入,运用模糊控制理论确定联合控制变量的联合控制参数,设计了四轮独立驱动电动汽车转向稳定性的横摆力矩控制策略.在Matlab/Simulink环境下选取不同车速、不同路面附着系数进行了连续转向行驶和突然转向行驶的仿真分析.结果表明,所设计的控制策略能够将质心侧偏角和横摆角速度控制在稳定范围内,使车辆在任意转向行驶工况下保持稳定,最大限度地提高轮毂电动汽车的转向稳定性.  相似文献   

19.
为了改善车辆转向轻便性和方向盘的回正能力,开展了利用左右车轮的转矩差实现差动助力转向和回正控制研究。首先利用转向系统模型预测方向盘力矩,根据助力特性曲线计算不同车速下的理想助力矩,由两者获得理想的方向盘力矩。以实测方向盘力矩与理想方向盘力矩的偏差作为控制目标,进而得到差动助力矩。以实现差动助力矩为目标,以横向稳定性为优化目标,基于二次规划方法对车轮驱动转矩进行最优分配,实现差动助力转向控制。最后根据方向盘转角特性,提出了差动助力转向与回正控制的结合方法。基于CarSim和MATLAB的联合仿真,证明提出的控制方法能改善车辆的转向轻便性和方向盘回正能力。  相似文献   

20.
四轮独立电驱动车辆全轮纵向力优化分配方法   总被引:5,自引:0,他引:5  
为了充分发挥四轮独立电驱动型式在直接横摆力矩控制系统中对改善车辆动力学性能的优势,提出了一种新的全轮纵向力优化分配方法。基于四轮独立驱动特点建立了侧重提高稳定性和侧重改善机动性的两种目标函数,分别用于降低整车路面附着负荷和降低整车横摆响应滞后。综合直接横摆力矩需求、地面附着及电机驱动限制得出全轮纵向力优化分配的约束条件。基于模糊理论设计了以车辆质心侧偏角为变量的权重函数,并对约束优化两种目标函数得出的纵向力分配值进行实时动态调整。该方法进一步提高了车辆在直接横摆力矩控制下的整车路面附着潜力并改善横摆响应速度,提升了车辆稳定性和机动性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号