首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 16 毫秒
1.
微通道内流的微尺度粒子图像测速技术实验研究   总被引:4,自引:0,他引:4  
采用微流动粒子图像测速技术Micro-PIV对0.4~0.8 mm的方形截面微通道流场进行了研究.实验选取3μm的荧光染色微球作为示踪粒子,使用532 nm激光、12位灰阶电荷耦合器件(CCD)相机及10倍显微物镜得到粒子图像.通过背景噪声处理技术提高了图像信噪比,并采用系综相关及回归算法得到了微通道截面的速度分布,测量的空间分辨率达到23.68μm×23.68μm×15.64μm.为了消除壁面随机粗糙分布的影响,采用沿流向进行空间平均方法得到了充分发展的方形截面微通道速度分布.将测量结果与方形截面理论幂函数速度廓线进行比较发现:微通道近壁区流场受到扰动的强弱和流道尺寸直接相关,除近壁区外的大部分区域速度分布与矩形截面流道理论速度分布符合良好.  相似文献   

2.
在类合金(NH4Cl-H2O溶液)定向凝固晶体生长实验装置上,利用30μm煤粉作示踪粒子,再现糊状区内微通道流以及通道出口处的流体流动,并测算了各处流体的瞬时速率.分析认为:凝固初期,糊状区内固相体积分数较大,内部流体流动受阻;随着固相体积分数减少,糊状区孔隙率增大,流体充分发展;当平均固相体积分数降至0.42,接近最小值0.38时,当量雷诺数达到临界值(247),糊状区内形成微通道;随着通道宽度逐渐扩大,液相区内热流体进入微通道.微通道内稀冷液体向上流,浓热液体向下流,促使通道内溶液再结晶.  相似文献   

3.
为了揭示螺旋通道横截面全流场信息,利用二维粒子图像测速仪(PIV)对高宽比为5∶7的矩形截面螺旋通道第二个螺距内的5个横截面流场进行了实验测量,获得了不同雷诺数下、不同横截面的二次流瞬态流场以及涡量场图像。实验结果表明:靠近螺旋通道外壁面下角处存在低速区,并产生了一个顺时针方向的旋涡,而螺旋通道内壁上角处同样存在低速区并产生了一个旋转方向相反的小旋涡,内壁上角和外壁下角的正负涡量绝对值较大;随着螺旋角的上升,横截面的二次流高速区速度分布由内侧逐步向外侧移动,使得外侧速度增加,其截面中心处二次流方向是自下向上流动;流体旋转一圈半后,螺旋流动达到稳定状态。此研究结果可为螺旋通道的强化换热设计提供一定的参考。  相似文献   

4.
针对湿法刻蚀玻璃微通道截面具有圆角形状的特性,采用Fluent6.3软件,对以水为介质的圆角形微通道内的流动特征进行数值计算研究。基于层流流动模型,对不同雷诺数Re、不同形状因子下圆角形微通道的流动压降进行数值模拟;通过结果整理与分析,拟合圆角形微通道Poisueille数Po随截面形状因子α变化的经验公式,即Po=10.161 1-2.408 5α+0.166 0α2+0.480 9α3-0.197 9α4+0.023 4α5;对此经验公式在不同微通道截面和不同黏度流体流动条件下的适应性进行了验证。研究结果表明:雷诺数与截面形状对圆角形微通道流动压降有很大影响;当截面宽度一定时,压降随雷诺数和形状因子的增大而增加;在所研究的雷诺数范围内,圆角形微通道Poiseuille数不随雷诺数的变化而变化,而随截面形状因子的增大而减小;当雷诺数0.01≤Re≤40、截面形状因子0.4≤α≤3.2时,本文中介绍的圆角形微通道阻力系数经验公式均适用。  相似文献   

5.
微通道内流流场的数值模拟及Micro-PIV测量   总被引:1,自引:0,他引:1  
采用数值模拟与实验研究方法对直管微通道内流流场进行了详细研究.实验测量借助Micro-PIV技术,采用3μm荧光示踪粒子、10倍显微物镜和14位灰阶CCD相机获取微尺度流场速度分布.利用Fluent数值计算软件,将微尺度通道壁面粗糙元抽象为多孔介质模型,采用realizable k-ε两方程模型,对边长为600μm和800μm的方形断面微尺度直通道分别在Re=100和Re=300条件下进行数值模拟,模拟结果与同工况下Micro-PIV实验测量结果进行对比,结果表明基于多孔介质模拟壁面粗糙元的realizable k-ε两方程模型能够良好地模拟微尺度管流流动,并且获得了多孔介质厚度采用微尺度通道的相对粗糙度折算,多孔介质的粘性阻力系数和惯性阻力系数由多孔介质区域内的流态及阻力计算的方法.  相似文献   

6.
平板微通道壁面粗糙度对流场影响的摄动分析   总被引:2,自引:0,他引:2  
选取相对粗糙度作为小参数建立了平板微通道流动的摄动方程组,采用傅里叶分析结合数值方法进行求解.计算结果表明:影响流场结构的主要因素为相对粗糙度和粗糙曲线的空间波数.当保持波数不变,增加壁面相对粗糙度时,无量纲流函数扰动峰值将增大,而流场受扰区域不发生变化;当保持相对粗糙度不变,减小空间波数时,流函数扰动峰值和流场受扰区域都将增大;近壁区流场中存在明显的涡结构,涡结构的出现使得流场内部的黏性耗散作用增强,因此导致相同条件下微通道层流的流动损失高于大尺度流动时的阻力损失.  相似文献   

7.
研究表明微通道的截面形状、尺寸以及数量显著影响流体在通道中的传热性能。基于热阻网络模型和计算流体力学(CFD,computational fluid dynamics)模拟,对适用于流动沸腾散热的铜基微通道设计进行了热性能分析。根据实验和模拟计算结果,在确保微通道内热边界层发展区满足恒定壁温条件下,8个平行的尺寸为200μm高,800μm宽,10 mm长的铜基微通道阵列即可满足一般的流动沸腾应用所需要的对流散热量(如6 kW/m~2)。该微通道热沉设计可以在30 min内达到稳定,也可以在相对较短的时间内将目标系统维持在稳定的合理工作温度。此外,实验结果表明在微通道入口处的流体冲击流动可以提高微通道壁面与工作流体之间的对流换热系数,并且在很大程度上降低了壁温。  相似文献   

8.
微柱群通道内的流动特性是设计与优化其散热结构的基础。采用显微粒子测速技术(Micro-PIV)对绕流微柱群流动进行研究,测定了不同Re下的绕流流场,分析了绕流微柱群的速度场以及Re对涡结构及回流长度的影响。结果表明,随着Re的增大,微圆柱尾流区出现涡结构,回流长度逐渐增大,微尺度下柱体绕流过程中边界层分离现象相对于宏观尺度具有一定的滞后性。  相似文献   

9.
在微型机电系统硅微制造技术制作的矩形硅微通道内注入血细胞溶液,用高速摄影机采集记录血细胞微流动图像,利用图像处理技术,对流动图像进行背景噪声滤除、对比度增强、平滑滤波、形态学运算等操作,并用提取的边缘进行图像分割及识别.按照目标识别的结果,对识别出的细胞形状通过曲线拟合法进行修正,计算出多个流动状态参数,如细胞大小、流动速度等.计算结果表明:微通道内细胞的流动速度仍近似地符合抛物线形分布,与宏观流动的流形相类似;在流体溶液的作用下,血细胞的流动状态不仅伸长变形成椭球形,而且还会产生翻滚和旋转的运动方式,并发生在细胞各自的移动路径中,使得细胞在流体中的姿态不断发生变化;细胞的翻滚和旋转产生的原因主要是血细胞自身形状所受的流动剪切力矩不平衡,而运动的结果使血细胞的流动行为更加复杂多变.  相似文献   

10.
为了提高微压印的质量,改进工艺参数优化模具结构,对微压印抗蚀剂的填充行为进行了数值计算和可视化实验研究。实验在三维离焦数字粒子图像测速系统中进行,由此提取了抗蚀剂中的荧光示踪粒子的坐标,通过时间解析算法获得了示踪粒子的三维粒子场,利用粒子跟踪测试技术获得了示踪粒子的速度场。数值模拟中采用了计算流体动力学软件,同时考虑了表面张力和接触角等因素,并根据模具特征划分了不同的压印区域,以分析、预测压印模型中的抗蚀剂填充行为。研究结果显示:数值模拟与实验结果吻合较好,抗蚀剂速度最大值在模具尖角与支撑基板之间,抗蚀剂速度水平方向上的实验最大误差为6.6%,竖直方向上的最大误差为9.6%;模具侧壁下方粒子运动轨迹的演化方向决定着抗蚀剂的体积转移方向和最终的填充形貌。该结果可为深入研究微压印中抗蚀剂流动提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号