首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
滚动轴承的振动信号具有较强的非平稳性,小波包(Wavelet Packet,WP)时频分析方法能有效提取非平稳信号的时频特征,具有精细的时频分辨率。而卷积神经网络(Convolutional Neural Network,CNN)强大的特征学习能力使其具有优于浅层网络的故障识别率。为了更准确地诊断出滚动轴承的运行状态,提出一种基于小波包与CNN相结合的滚动轴承故障诊断方法:对采集的轴承振动信号进行小波包时频分析,得到各类信号的时频特征图,采用fine-tuning技术在CNN模型caffe Net上进行微调,解决少量样本训练CNN模型的问题,最终得到了可用于滚动轴承故障诊断的CNN模型。采用小波包与CNN相结合进行故障诊断,故障识别率达到了99.1%,高于连续小波变换(CWT)和短时傅里叶变换(STFT)与CNN相结合的故障识别率。而采用主成分分析(PCA)与支持向量机(SVM)相结合的故障识别率最低,且对复合故障的识别效果明显不足。  相似文献   

2.
针对电动汽车轮毂电动机常见的轴承故障,提出了一种基于复合区分度指标(compound dis-tinguish index,CDI)和人工碳氢网络(artificial hydrocarbon networks,AHNs)的轮毂电动机轴承故障逐次诊断方法.首先通过信号共振稀疏分解从原始信号中提取反映故障冲击的低共振分量;然后着重考虑不同车速工况对电动机轴承振动信号的影响程度,基于CDI在时频域中提炼出多个高敏感特征参数来表征电动机轴承运行状态,提高诊断的时效性;最后通过特征参数与轴承状态的隶属关系建立样本集,基于AHNs构建轮毂电动机轴承故障逐次诊断模型,实现多工况下不同故障状态的识别,并在轮毂电动机综合台架上进行了试验验证.结果表明:该方法的诊断正确率高达98.46%,且具有较好的鲁棒性,能够有效实现轮毂电动机轴承故障的诊断.  相似文献   

3.
针对轴承故障诊断问题,提出一种基于相关度分析与网格搜索算法(GS)优化支持向量机(SVM)的轴承故障诊断方法。采用GS算法对SVM的惩罚参数c和核函数参数g进行寻优,以此建立分类器用于识别轴承故障类型。在模型建立方面巧妙地加入了分层的思想,通过相关度分析之后采用多层GS-SVM模型使轴承的故障诊断准确率相对于近年来的研究得到了明显的提升。最后,采用凯斯西储大学轴承数据中心的滚动轴承故障数据进行了分类识别实验。实验表明,研究提出的轴承故障诊断方法在直接作用于原信号的基础上不仅能够有效的识别轴承正常状态、内圈故障、外圈故障以及滚珠故障,而且还对每一类故障的严重程度有很好的区分,提高了故障类样本的诊断正确率,具有较强的实用性。  相似文献   

4.
针对滚动轴承振动信号在强噪声环境下出现非线性、非平稳、强干扰特性,进而导致故障特征难以提取及故障诊断准确率低的问题,提出变分模态分解(VMD)-多尺度排列熵(MPE)-核主元分析(KPCA)特征提取与多分类相关向量机(MRVM)相混合的滚动轴承故障诊断方法.该方法首先通过VMD-MPE进行滚动轴承振动信号的高维故障特征提取,其次对提取的故障特征进行KPCA可视化降维,最后将降维后的故障特征输入可实现不同样本概率输出的MRVM进行滚动轴承故障诊断.通过美国西储大学的滚动轴承故障数据集对该方法的有效性进行验证,结果表明提出的VMD-MPE-KPCA特征提取与MRVM相混合的滚动轴承故障诊断方法能够有效提取和识别滚动轴承故障特征,所提出的混合智能故障诊断方法与相关文献报道的故障诊断方法相比较,故障识别准确率达到了99.18%.  相似文献   

5.
状态监测与故障诊断是保证机械设备安全稳定运行的必要手段.本文提出一种基于注意力机制双向LSTM网络(ABiLSTM)的深度学习框架用于机械设备智能故障诊断.首先,将传感器采集的设备原始数据进行预处理,并划分为训练样本集与测试样本集;其次,训练多个不同尺度的双向LSTM网络对原始时域信号进行特征提取,得到设备故障多尺度特征;再次,通过引入注意力机制,对不同双向LSTM网络提取特征的权重参数进行优化,筛选保留目标特征,滤除冗杂特征,以实现精准提取有效故障特征;最后,在输出端利用Softmax分类器输出故障分类结果.通过利用发动机气缸振动实验数据和凯斯西储大学滚动轴承实验数据进行故障诊断实验,故障识别准确率均达到99%以上.实验结果表明,ABiLSTM模型可以实现对原始时域信号的多尺度特征提取和故障诊断,通过与深度卷积网络(CNN)、深度去噪自编码器(DAE)和支持向量机(SVM)等方法进行对比,ABiLSTM模型的故障识别性能优于各类常见模型.另外,通过利用凯斯西储大学滚动轴承在不同工况条件下的数据,对ABiLSTM模型进行泛化性能实验,变工况样本的故障识别准确率仍然能够达到95%以上.  相似文献   

6.
谐波小波样本熵与HMM模型的轴承故障模式识别   总被引:1,自引:0,他引:1  
根据谐波小波分解非平稳振动信号优良特性与隐马尔科夫(HMM)模型的时序模式分类能力,提出了一种基于谐波小波样本熵与HMM模型结合的轴承故障模式识别方法.该方法首先利用谐波小波对轴承各个状态故障信号进行分解,进而由谐波小波三维时频网格图的频率层数特征计算合理的样本熵维数和阈值,依次提取轴承振动信号各层的样本熵构成特征向量序列;然后将序列前120组输入HMM模型中进行训练得到对应故障模型,剩余80组进行测试与识别,通过对比对数似然估计概率输出值确定轴承故障类型.实验通过与BP和RBF神经网络模型进行不同训练组数的正确识别率对比,验证了该组合方法具有识别准确率高,稳定性强的优点.  相似文献   

7.
深度学习近年来在故障诊断领域受到广泛应用,但基于深度学习的故障诊断模型缺乏工程上的物理解释性,难以保证其故障诊断结果的稳定性。以轴承为例,建立了以小波时频图像为故障诊断依据的卷积神经网络模型(convolutional neural network, CNN),提出了一种基于梯度加权类激活热力图(gradient-weighted class activation map, Grad-CAM)的网络模型鲁棒性分析方法,并利用美国凯斯西储大学(Case Western Reserve University, CWRU)轴承数据集进行验证。首先,将故障直径轴承数据以不同方式混合并训练大、小多个模型。其次,利用Grad-CAM方法,建立时频区域与故障模式之间的联系。最后,利用其他工况下的轴承故障数据,以及含噪数据进行测试,并根据结果结合模型最注重的时频区域进行分析。结果表明,基于深度学习的轴承故障诊断模型在参数较少时更加注重低频区域,并能使其具有更好的鲁棒性。  相似文献   

8.
针对旋转机械故障诊断需要复杂特征提取过程,且对混有噪声的信号故障识别准确率偏低的问题,提出了一种基于注意力机制的多尺度端到端故障诊断方法。该方法在输入端引入随机丢弃抑制输入噪声,然后利用故障信号具有多个固有振动模态的特点,通过多尺度粗粒度层获取不同尺度下振动信号,进而利用全卷积网络实现多尺度特征提取,接着采用注意力机制将多尺度特征进行融合,最后利用多分类函数实现旋转机械故障诊断。分别在凯斯西储大学轴承数据集和变速箱数据集对该方法的有效性进行验证,结果表明:该方法的故障识别率高达100%;人为引入噪声信号的信噪比为-4dB时,在凯斯西储大学轴承数据集F上的故障识别正确率为84.77%,在齿轮箱数据集上的识别正确率为78.365%,识别正确率明显高于其他机器学习算法,证明了该方法具有较强的抗噪声干扰能力。  相似文献   

9.
针对齿轮故障诊断中单一传感器采集信息不完全、容错性不佳及一种神经网络模型具有局限性,传统信号处理技术提取特征困难等问题,提出了多深度学习模型决策融合的齿轮箱故障诊断分类方法,构建了基于CNN(Convolutional Neural Networks)和改进SDAE(Stacked Denoising Autoencoders)的混合网络模型,根据改进的D-S证据理论实现决策级融合诊断。以时频信号作为CNN的输入,以频域信号作为SDAE的输入,采用Adam优化算法和dropout、批量归一化技术训练该混合模型。实验结果表明,利用该融合方法对齿轮进行故障诊断相比单个的网络模型CNN和SDAE诊断正确率有所提高,为齿轮故障智能诊断分类提供了新路径。  相似文献   

10.
深度学习具有强大的学习能力和特征分类能力,能够在海量、多源和高维测量数据中进行特征提取,具有不依赖人工干预而进行模型诊断和泛化的能力,广泛应用于设备故障诊断领域。阐述了深度学习的典型模型:深度置信网络(DBN)、卷积神经网络(CNN)和自编码器(AE),重点论述了深度学习在轴承故障诊断领域的应用进展。最后讨论了深度学习在轴承故障诊断领域所存在的问题及发展趋势。  相似文献   

11.
针对复杂工况下滚动轴承受机械噪声等因素影响轴承故障类型区分难的问题,提出了一种基于自适应广义形态滤波和GG聚类的轴承故障诊断方法。采用自适应广义形态滤波对轴承振动信号进行降噪处理,对降噪后的信号进行变模式分解,去除虚假分量和噪声分量,最后对去噪后故障特征较多的信号分量求解近似熵,作为特征向量输入GG聚类分类器中,达到故障分类。仿真实验结果证明该方法能有效提取信号特征信息,准确识别故障类型。  相似文献   

12.
针对故障状态下的滚动轴承振动信号非线性非平稳性强、噪声干扰大导致的故障敏感特征提取难的问题,在对轴承振动信号进行局域均值分解(local mean decomposition,LMD)的基础上,提出了一种基于故障敏感分量的特征提取与改进K近邻分类器(K-nearest neighbor classifier,KNNC)的故障状态辨识方法。该方法采用相关系数法对LMD分解出的振动分量进行故障敏感性的量化表征,然后对筛选出的信号分量进行时域/频域的特征提取,构建不同故障状态下的特征样本集。为加快故障状态识别速度,排除不良样本的影响,提出一种基于二分K均值聚类的改进KNNC算法,精简了大容量的训练样本,有效去除不良特征样本和干扰点。实验结果表明,以敏感分量特征作为输入的改进KNNC算法能够快速准确地识别轴承不同故障状态。  相似文献   

13.
针对离心鼓风机故障识别过程中单一传感器信号故障信息有限,传统的卷积神经网络(CNN)在处理多源高维数据时特征提取能力不足的问题,提出一种基于多源信息融合和自适应深度卷积神经网络(ADCNN)的离心鼓风机故障诊断方法。首先,基于相关性方差贡献率法实现离心鼓风机多源同类信息的数据层融合,建立多源信息融合框架;然后,利用ADCNN自适应地提取各异类信息的特征并完成特征融合,建立融合多源信息的ADCNN故障诊断模型;最后,将此方法应用于离心鼓风机转子故障诊断上,并与传统的融合模式以及CNN、反向传播神经网络(BPNN)、支持向量机(SVM)方法进行对比,试验结果表明:提出的方法在诊断精度与鲁棒性上均优于其他方法。  相似文献   

14.
为了提高多工况下对滚动轴承的故障辨识能力,本文提出以乘积函数相关熵为故障特征的滚动轴承故障辨识方法,并利用最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)实现自动辨识.首先对预处理的轴承振动信号进行局部均值分解,提取乘积函数(Product Function,PF),然后计算PF与原始信号的皮尔逊积矩相关系数熵,进而根据离散变量相关熵的估计模型得到乘积函数相关熵(Product Function Correntropy,PFC).以PFC为故障特征,结合LSSVM实现滚动轴承的故障识别.多组工况下的滚动轴承状态辨识实验证实了PFC比经典故障特征具有更高的故障辨识效率;另外改变工况参数提取轴承振动数据,验证了PFC-LSSVM方法具有更好的鲁棒辨识能力.综上所述,本文验证了LMD-PFC-LSSVM方法的高效性和实用性,为提高复杂工况下在线故障诊断能力提供了可靠的技术支持,具有广阔的应用前景.  相似文献   

15.
轴承作为感应电机的关键部件,其运行状态直接影响船舶电力拖动系统安全。为解决船舶感应电机轴承故障诊断难题,本文提出一种基于PCA-VNWOA-LSSVM的故障诊断模型。选用美国凯斯西储大学轴承振动数据,利用离散小波分解(discrete wavelet transformation, DWT)从振动信号中提取内圈、外圈和滚动体故障特征,按不同故障类型和直径进行分组、主成分分析(principal component analysis,PCA)降维,结合改进的鲸鱼优化算法(von neumann whale optimization algorithm, VNWOA)对最小二乘支持向量机(least squares support vector machine, LSSVM)初始参数δ 2和γ寻优,搭建其故障识别模型,最后将遗传算法(genetic algorithm, GA)和粒子群算法(particle swarm optimization, PSO)的寻优诊断结果与之对比。结果表明:基于PCA-VNWOA-LSSVM的模型故障诊断精度高,且具有良好的稳定性及诊断速度。  相似文献   

16.
针对现场采集的滚动轴承信号易受噪声影响而使微弱故障特征难以提取的问题,基于灰狼优化算法(GWO)、变分模态分解(VMD)和卷积神经网络(CNN),提出了一种滚动轴承故障诊断的新方法.首先,利用GWO优化VMD实现其分解层数及二次惩罚因子2个重要参数的自适应选择;其次,提出有效加权相关稀疏度指标(EWCS),并以此筛选VMD分解的有效本征模态函数(IMF);最后,使用GWO优化CNN参数,并采用2层卷积模块的CNN进行识别分类.基于所提方法,对滚动轴承4种不同运行状态的样本进行了分类识别,并与其他几种诊断方法进行比较.结果表明,该方法用于滚动轴承故障诊断是可行的,且具有更高的分类准确率.  相似文献   

17.
针对噪声环境下滚动轴承故障难以诊断的问题,提出一种基于深度学习融合网络的轴承故障识别新方法。该方法首先对轴承振动信号进行一定程度的随机损坏,并将加噪后的数据输入卷积降噪自编码器(convolutional denoising autoencoder,CDAE)中对网络进行训练,目的是降低信号中的噪声干扰并提取浅层特征;然后,利用深度信念网络(deep belief network,DBN)学习深层特征并建立轴承状态识别模型,输出故障识别结果。在融合模型中,将卷积降噪自编码器作为网络的第一层以增强网络的抗干扰能力,提高故障的识别精度。使用凯斯西储大学(CWRU)滚动轴承数据对所提模型进行验证,结果表明提出的融合模型在噪声环境下能够较好地实现轴承的故障状态识别。  相似文献   

18.
19.
针对滚动轴承早期微弱故障信号易受噪声、光滑信号影响而难以检测的问题,提出将奇异值分解(singular value decomposition,SVD)突变信息特征提取和变量预测模型模式识别(variable predictive model based class discriminate,VPMCD)方法相结合用于轴承故障诊断.首先采用SVD对振动信号进行分析,根据曲率谱及类间、类内最大方差比阈值,实现突变信息与背景噪声、光滑信号的有效分离;然后提取突变信息时域、频域特征参数,构建表征轴承运行状态的混合域特征向量,用于建立基于VPMCD方法的故障诊断模型.将此方法应用于轴承故障诊断,实验证明了所提方法的有效性.  相似文献   

20.
针对噪声环境下滚动轴承故障难以诊断的问题,提出一种基于深度学习融合网络的轴承故障识别新方法。该方法首先对轴承振动信号进行一定程度的随机损坏,并将加噪后的数据输入卷积降噪自编码器(convolutional denoising autoencoder,CDAE)中对网络进行训练,目的是降低信号中的噪声干扰并提取浅层特征;然后,利用深度信念网络(deep belief network,DBN)学习深层特征并建立轴承状态识别模型,输出故障识别结果。在融合模型中,将卷积降噪自编码器作为网络的第一层以增强网络的抗干扰能力,提高故障的识别精度。使用凯斯西储大学(CWRU)滚动轴承数据对所提模型进行验证,结果表明提出的融合模型在噪声环境下能够较好地实现轴承的故障状态识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号