首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 160 毫秒
1.
针对噪声环境下滚动轴承故障难以诊断的问题,提出一种基于深度学习融合网络的轴承故障识别新方法。该方法首先对轴承振动信号进行一定程度的随机损坏,并将加噪后的数据输入卷积降噪自编码器(convolutional denoising autoencoder,CDAE)中对网络进行训练,目的是降低信号中的噪声干扰并提取浅层特征;然后,利用深度信念网络(deep belief network,DBN)学习深层特征并建立轴承状态识别模型,输出故障识别结果。在融合模型中,将卷积降噪自编码器作为网络的第一层以增强网络的抗干扰能力,提高故障的识别精度。使用凯斯西储大学(CWRU)滚动轴承数据对所提模型进行验证,结果表明提出的融合模型在噪声环境下能够较好地实现轴承的故障状态识别。  相似文献   

2.
状态监测与故障诊断是保证机械设备安全稳定运行的必要手段.本文提出一种基于注意力机制双向LSTM网络(ABiLSTM)的深度学习框架用于机械设备智能故障诊断.首先,将传感器采集的设备原始数据进行预处理,并划分为训练样本集与测试样本集;其次,训练多个不同尺度的双向LSTM网络对原始时域信号进行特征提取,得到设备故障多尺度特征;再次,通过引入注意力机制,对不同双向LSTM网络提取特征的权重参数进行优化,筛选保留目标特征,滤除冗杂特征,以实现精准提取有效故障特征;最后,在输出端利用Softmax分类器输出故障分类结果.通过利用发动机气缸振动实验数据和凯斯西储大学滚动轴承实验数据进行故障诊断实验,故障识别准确率均达到99%以上.实验结果表明,ABiLSTM模型可以实现对原始时域信号的多尺度特征提取和故障诊断,通过与深度卷积网络(CNN)、深度去噪自编码器(DAE)和支持向量机(SVM)等方法进行对比,ABiLSTM模型的故障识别性能优于各类常见模型.另外,通过利用凯斯西储大学滚动轴承在不同工况条件下的数据,对ABiLSTM模型进行泛化性能实验,变工况样本的故障识别准确率仍然能够达到95%以上.  相似文献   

3.
针对噪声环境下滚动轴承故障难以诊断的问题,提出一种基于抗噪多核卷积神经网络(anti-noise multi-core convolutional neural network,AMCNN)的轴承故障识别新方法。首先,对滚动轴承振动信号进行预处理,得到数据样本,分为训练集和测试集;然后建立轴承寿命状态识别模型,将标签化的训练集数据样本输入AMCNN中进行训练;最后,将训练后的AMCNN模型应用于测试集,输出故障识别结果。在训练过程中,为抑制过拟合,对原始训练样本进行加噪处理;为提高模型抗干扰能力,将dropout层作为AMCNN的第一层。运用轴承实验数据对识别模型进行检验,通过对比验证,结果表明所提出的识别方法在高噪声环境下能更准确地实现轴承故障状态识别。  相似文献   

4.
为了提取连铸机扇形段在正常浇铸状态下的故障特征,设计一种利用鲸鱼优化算法(WOA)改进的堆叠降噪自编码器(SDAE)网络模型,命名为WOA-SDAE,并应用于扇形段拉矫力信号特征学习和故障分类。首先,从完整的浇铸周期中获取正常浇铸状态下的数据,对低频的拉矫力信号进行时域特征提取,将一维拉矫力信号转换为多维时域特征信号,并建立评价体系以寻找最优时域参数;其次,运用堆叠降噪自编码器与softmax分类器组成网络模型对故障信号进行分类,采用鲸鱼优化算法确定SDAE模型中隐含层层数与节点数。通过实际生产过程中的连铸机扇形段拉矫力信号来验证所提方法的可行性。试验结果表明,WOA-SDAE可有效提取扇形段的故障特征,在测试集上的识别准确率达到92.23%。  相似文献   

5.
针对滚动轴承故障信号的非平稳性、非线性及复杂性特征以及在故障识别过程中存在噪声干扰、故障特征不清晰的问题,提出一种基于固有时间尺度分解(Intrinsic Time-scale Decomposition,ITD)与最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)结合的轴承故障特征提取方法。利用固有时间尺度分解对故障信号进行分解,降低信号分解中的模态混叠;对分解的固有旋转分量进行选择,提取故障信号的有用成分,实现信号降噪;采用粒子群优化的MCKD提取故障特征信号的冲击成分。实验结果表明,该方法可以降低信号的模态混叠问题,增强故障特征,有利于噪声环境下轴承故障特征的提取。  相似文献   

6.
深度学习具有强大的学习能力和特征分类能力,能够在海量、多源和高维测量数据中进行特征提取,具有不依赖人工干预而进行模型诊断和泛化的能力,广泛应用于设备故障诊断领域。阐述了深度学习的典型模型:深度置信网络(DBN)、卷积神经网络(CNN)和自编码器(AE),重点论述了深度学习在轴承故障诊断领域的应用进展。最后讨论了深度学习在轴承故障诊断领域所存在的问题及发展趋势。  相似文献   

7.
陶沙沙  郭顺生 《科学技术与工程》2020,20(29):12196-12203
针对原始振动数据无监督特征学习问题,提出了一种深度小波自动编码器(deep wavelet automatic encoder,DWAE)与鲁棒极限学习机(extreme learning machine,ELM)相结合的滚动轴承的智能故障诊断方法。首先,利用小波函数作为非线性激活函数设计小波自动编码器从而有效地捕获信号特征。其次,利用多个小波自动编码器构造一个深度小波自动编码器来增强无监督特征学习能力。最后,采用鲁棒极限学习机作为分类器,对不同的轴承故障进行分类识别。用该方法对实验所得的轴承振动信号进行对比分析,结果验证了该方法能够在原始振动数据无监督特征学习的条件下该方法优于传统方法和标准深度学习方法。  相似文献   

8.
为了解决卷积神经网络权值往往只能随机初始化的问题,提出了一种卷积自编码器。以卷积池化过后的特征为权值,对反卷积核进行叠加,叠加步长为池化时的长度,将信号重构回原信号空间。以原信号与重构信号的差值最小为目标,对卷积核和反卷积核进行优化。进一步,编码特征可以作为新的输入,利用同样的方式进行编码,依次循环,最后给网络加上全连接网络和分类器,用少量带标签样本进行微调,形成具有复杂特征提取能力的深度卷积自编码网络。将该网络用于滚动轴承故障识别,将时域振动信号直接输入网络,在公共数据集——西储大学轴承数据集以及实验室实测数据集上均取得了比传统卷积神经网络要好得多的识别效果,例如在实验室实测数据集上将识别精度从0.799提高到了0.921。将底层提取到的特征通过反卷积核逐层重构,第一次在原信号空间看到了神经网络到底"学"到了什么。观察重构信号可知,卷积神经网络对信号特征的提取实际上就是对信号的一种分解,网络底层通道数对应信号分解时基的个数,通道内单个特征对应基分解时的时间点。提出的卷积自编码器以及对网络结构的分析可为后续科研技术人员构建卷积神经网络提供指导。  相似文献   

9.
针对现有深度学习方法对非平稳的滚动轴承故障诊断过程中,先验故障信息利用不充分和故障样本不完备,导致诊断精度不高甚至无法诊断的问题,充分发掘轴承故障位置和损伤程度与振动数据特征间的映射关系,提出一种考虑滚动轴承故障位置与损伤程度的双分支卷积神经网络故障诊断方法。该方法首先将原始振动信号矩阵化,构建二维灰度图像数据集,然后建立双分支的改进VGGNet深度卷积网络,将故障位置与损伤程度进行双标签二值化,每个分支独立提取深层特征,实现故障位置和损伤程度特征与标签的自适应。仿真实验结果表明,相较其他深度学习方法,所提方法能够在部分先验知识缺失条件下,实现滚动轴承潜在的不同故障位置及损伤程度的多状态分类,获得较高准确率的同时兼具良好的抗噪性能。  相似文献   

10.
为了准确提取出滚动轴承的故障特征并对轴承状态进行评估,提出了一种固有时间尺度分解(intrinsic time-scale decomposition,ITD)与多尺度形态滤波相结合的滚动轴承故障特征提取方法。首先,采用ITD方法将滚动轴承故障信号分解成多个固有旋转分量(proper rotation,PR);然后,对比各个PR分量与原始信号的相关性;最后,采用多尺度形态滤波算法对相关性较大PR分量进行滤波降噪,并提取滚动轴承故障特征频率。采用所建立方法对轴承外圈故障和内圈故障实验数据进行分析。结果表明,所提出的故障特征提取方法能够有效抑制噪声,清晰准确地提取出滚动轴承故障特征频率。  相似文献   

11.
针对强背景噪声下非高斯脉冲噪声和高斯噪声对滚动轴承故障诊断产生严重干扰的问题,提出了一种基于改进变分模态分解(variational mode decomposition, VMD)并与循环相关熵谱(cyclic correntropy spectrum, CCES)相结合的故障诊断方法。首先,针对VMD传统重构指标易受噪声影响的问题,引入相关熵峭度(correlation entropy kurtosis index, CEK)指标对VMD分解后的模态分量进行选择与重构,去除高斯噪声;然后针对重构后信号仍存在的脉冲噪声影响问题,对重构信号进行CCES投影融合去除非高斯脉冲噪声干扰并增强特征;最后对融合结果进行分析与故障诊断。经仿真测试与实验表明,所提出的方法可以在高斯噪声和非高斯脉冲噪声背景下有效提取滚动轴承故障特征频率并实现故障诊断。  相似文献   

12.
针对滚动轴承振动信号在强噪声环境下出现非线性、非平稳、强干扰特性,进而导致故障特征难以提取及故障诊断准确率低的问题,提出变分模态分解(VMD)-多尺度排列熵(MPE)-核主元分析(KPCA)特征提取与多分类相关向量机(MRVM)相混合的滚动轴承故障诊断方法.该方法首先通过VMD-MPE进行滚动轴承振动信号的高维故障特征提取,其次对提取的故障特征进行KPCA可视化降维,最后将降维后的故障特征输入可实现不同样本概率输出的MRVM进行滚动轴承故障诊断.通过美国西储大学的滚动轴承故障数据集对该方法的有效性进行验证,结果表明提出的VMD-MPE-KPCA特征提取与MRVM相混合的滚动轴承故障诊断方法能够有效提取和识别滚动轴承故障特征,所提出的混合智能故障诊断方法与相关文献报道的故障诊断方法相比较,故障识别准确率达到了99.18%.  相似文献   

13.
针对传统滚动轴承故障诊断中复杂的特征提取问题,利用深层残差网络能够增强诊断模型非线性表征能力的特点,通过引入通道注意力与空间注意力机制,提出一种基于多注意力机制端到端的滚动轴承智能故障诊断方法。首先,通过原始振动加速度信号经过积分运算得到速度和位移;然后,将3者组合成具有特征增强的图像,输入至结合了多注意力机制的深层残差网络实现特征提取;最后,利用多分类函数完成滚动轴承故障分类。在本地实验室轴承数据集上进行了验证,结果表明,所提方法的诊断准确率达到了97.50%。验证了基于多注意力机制端到端的滚动轴承智能故障诊断方法的可行性和有效性,可为滚动轴承的精确故障诊断提供支持。  相似文献   

14.
针对现有基于振动信号的诊断模型泛化能力差,而深度学习网络对计算量和存储量要求高的问题,提出轻量级融合密集连接网络与残差神经网络的故障诊断模型.首先,利用格拉姆角场将原始时序信号映射为灰度图像,充分利用二维卷积神经网络的性能;然后,融合密集连接网络和残差神经网络的优点构建融合网络模型,并通过鬼影模块降低其性能消耗,形成轻量级和高识别率的深度网络.实验结果表明,该改进的融合深度学习模型在比传统模型具有更强的鲁棒性和适用性的同时,还拥有极低的浮点运算量与参数量资源占用,证明了该方法在滚动轴承故障诊断领域是有效的、可行的.  相似文献   

15.
深度学习近年来在故障诊断领域受到广泛应用,但基于深度学习的故障诊断模型缺乏工程上的物理解释性,难以保证其故障诊断结果的稳定性。以轴承为例,建立了以小波时频图像为故障诊断依据的卷积神经网络模型(convolutional neural network, CNN),提出了一种基于梯度加权类激活热力图(gradient-weighted class activation map, Grad-CAM)的网络模型鲁棒性分析方法,并利用美国凯斯西储大学(Case Western Reserve University, CWRU)轴承数据集进行验证。首先,将故障直径轴承数据以不同方式混合并训练大、小多个模型。其次,利用Grad-CAM方法,建立时频区域与故障模式之间的联系。最后,利用其他工况下的轴承故障数据,以及含噪数据进行测试,并根据结果结合模型最注重的时频区域进行分析。结果表明,基于深度学习的轴承故障诊断模型在参数较少时更加注重低频区域,并能使其具有更好的鲁棒性。  相似文献   

16.
提出一种基于深度置信网络(DBN)和信息融合技术的轴承故障诊断新方法。首先采用集合经验模式分解将轴承振动时域信号分解为若干个固有模态函数,并分别输入至若干个DBN中进行故障状态识别,然后通过简单投票法将每个DBN识别的结果进行决策层信息融合,从而得到轴承故障的最终诊断结果。通过对单负载和多负载下不同类型和不同损伤程度的滚动轴承故障诊断进行实例分析,验证了本文方法的有效性和精确性。  相似文献   

17.
噪声是影响轴承、齿轮等机械设备早期微弱故障特征正确提取的主要因素,利用新颖的时频峰值滤波技术TFPT有力的噪声消减特性,将PTFT与改进的时频分布MBD相结合,提出了时频峰值滤波TFPT-时频分布MBD的故障识别新方法,即应用TFPF消减振动信号的随机噪声作为时频分析的前置处理,对消噪的故障信号作MBD时频分析来识别故障特征,给出了时频峰值滤波时频分布的故障诊断模型。诊断实例的分析结果表明了与传统的MBD的故障特征提取相比,提出的改进方法更易提取出强噪声背景下的轴承早期的微弱故障,具有明显的可诊断性和实用性。  相似文献   

18.
针对传统智能诊断方法依赖于信号处理和故障诊断经验提取故障特征以及模型泛化能力差的问题,基于深度学习理论,提出将卷积神经网络算法结合softmax分类器,针对数据集不平衡问题引入加权损失函数、正则化以及批量归一化等模型优化技术搭建适于滚动轴承故障诊断的改进型深度卷积神经网络模型。模型从原始实测轴承振动信号出发逐层学习实现特征提取与目标分类。实验结果表明,优化后的深度学习模型可实现对早期微弱故障、不同程度故障的精确识别,在不平衡数据集上也可达到95%的识别准确率,并且模型拥有较快的收敛速度和较强的泛化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号