首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
为了填补客货分离式互通立体交叉设计上的空白,提供相关设计的理论支持,以小客车车辆行驶特征为基础,研究客货分离高速公路小客车专用单车道加速车道的最小长度。首先,在分析主线和匝道设计速度、小客车加速性能等因素对加速段长度影响以及汇入交通流车头时距特征、主线设计通行能力、车头时距最小值等对等待段长度影响的基础上,建立了小客车专用加速车道的加速段、等待段和三角渐变段长度计算模型。其次,通过分析国内外规范中合理的小客车特征速度、加速度等参数,确定小客车专用单车道加速车道最小长度计算模型中的关键指标,通过计算提出了单车道小客车专用匝道加速车道最小长度建议值。最后,分析不同纵坡坡度对小客车合流的影响,提出了上坡加速段纵坡坡度修正系数。研究结果表明:中国规范规定的加速车道最小长度值仅满足匝道设计速度大于或等于50 km/h时的长度要求,当匝道设计速度小于50 km/h时,规范规定值无法满足小客车安全汇流的要求,宜适当提高规范规定的最小长度;当加速车道位于上坡时,只需要对加速车道加速段的最小长度进行修正即可,不需要对整个加速车道长度进行修正;平行式加速车道较直接式加速车道三角渐变段更短,且随设计速度的提高,二者之差逐渐增大;从占地角度考虑,平行式加速车道更适用于小客车专用单车道加速车道。  相似文献   

2.
苜蓿叶立交集散车道内车辆运行速度特征分析   总被引:1,自引:1,他引:0  
为了确定高速公路苜蓿叶立交集散车道车辆运行速度特征和速度值,确保车辆在集散车道上运行协调可控,使车辆在行驶时能够安全运行。采用雷达测速仪对集散车道各出入车辆运行速度进行实地采集,选取互通立交集散车道特征点处自由流状态下车辆速度作为分析样本,建立主线车辆通过集散车道驶出高速和相交高速车辆通过集散车道驶入主线的速度运行曲线。结果表明:车辆通过集散车道进入出口匝道1,整个车辆运行过程中处于减速状态,从分流点到鼻端减速较慢;而从鼻端到第一个出口车辆减速较快。车辆通过集散车道进入出口匝道2,车辆先减速后匀速,到达交织区时再次减速,最后驶入匝道。车辆从入口匝道1进入集散车道,车辆以较为稳定的加速驶入主线。车辆从入口匝道2进入集散车道,先以较大的加速行驶,后缓慢加速驶入主线。可见,车辆通过集散车道出入高速公路运行速度呈现出规律性。通过对车辆运行速度分析,对集散车道车辆的交通安全防控和规范的完善有着重要价值。  相似文献   

3.
变速车道是互通式立交中,车辆在该区段上实现分流、变速、合流和车道转移,主线车道和匝道之间的一段附加车道.也很容易诱发交通事故。若变速车道设计不当,则会造成行车不适,鉴于互通式立交对周边地区的影响本文从变速车道的形式选择出发,对变速车道的长度计算进行了分析,并对出口匝道进行了设计,研究结果具有一定的工程参考价值。  相似文献   

4.
为明确苜蓿叶形互通立交进/出口的车辆运行过程,修正驾驶行为假定,在3座立交上开展了实车驾驶试验.利用车载航姿测量系统采集了自然驾驶状态下的小客车连续行驶速度和加速度数据,基于行驶速度变化特征将环形匝道连续行驶过程划分成了5个阶段,分析了立交进/出口区域的纵向驾驶行为特征,确定了减速长度和加速长度的起/止点分布.结果表明:在立交出口,第85百分位减速起点位于交织段,终点位于分流点之前,还有不低于15%的减速行为在分流鼻后结束;在立交进口,驾驶人在合流点前观察主线交通流,普遍采取减速操作并持续至加速段、渐变段甚至交织段.不同驾驶人减速行为的分布区域存在交织,导致车辆间出现纵向冲突,增加了事故风险.立交出口的减速长度主要分布在30~60 m,第85百分位减速度为0.55 m/s~2;入口区域的减速长度主要分布在20~60 m,第85百分位减速度为0.63 m/s~2;匝道坡向对驾驶行为的影响不显著.  相似文献   

5.
八车道高速公路互通式立交最小净距计算模型   总被引:1,自引:0,他引:1  
为解决目前路线设计规范中互通式立交最小净距规定值不适应八车道高速公路的问题,避免因互通式立交间距设置过近造成的交通紊乱和交通安全问题,通过分析八车道高速公路小间距互通式立交间车辆的运行特征和变道行为,构建了八车道高速公路互通式立交最小净距计算模型;运用概率论、微积分、可接受间隙理论及运动学相结合的方法,从等待和追赶可插入间隙角度分析了车辆从外侧车道换道至内侧车道、从内侧车道换道至外侧车道所需的长度,并结合现场调查数据对模型的关键参数进行了界定。结果表明:八车道高速公路互通式立交最小净距值宜为2.2km。  相似文献   

6.
高速公路加速车道上车辆的汇入特征分析   总被引:1,自引:0,他引:1  
为了研究高速公路入口匝道上车辆的汇入规律,利用摄像和Autoscope-2004图像处理系统在江苏、山西、河北、北京、天津、广东等地对高速公路合流区加速车道上车辆的汇入特征数据进行了大量调查,在对调查数据进行处理分析的基础上,运用概率分析和微分法建立了匝道车辆的汇入概率模型和行驶距离分布概率模型,利用实际数据对模型进行检验,并举例说明模型在高速公路加速车道长度的设计、评价和分析方面的应用,该模型揭示了匝道车辆汇入概率与合流区几何特征、交通特征的数学关系,不但解释了调查结果,而且对高速公路规划设计、控制管理等工程实践有重要的指导意义。  相似文献   

7.
文章就互通式立体交叉的设计特点,结合立交内变速车道的超高及其过渡的应用。介绍了匝道纵坡设计时选择起、终点的问题,以提高上下互通车辆行车的舒适性及安全性。  相似文献   

8.
为克服现行规范计算高速公路加速车道长度采用确定性方法的缺点,提出了一种基于概率方法的加速车道长度计算模型.首先,获取6条加速车道上223辆小客车和86辆货车的时空分布数据,计算了车辆的速度和加速度,确定了车辆加速度随速度线性递减模型.然后根据车辆的速度与加速度特性,认为货车为计算加速车道长度的不利车型.基于货车的速度与加速度数据,建立了加速车道变速段长度的概率计算模型.结果表明,利用可靠度方法计算加速车道长度,比确定性方法计算加速车道长度更加接近车辆实际运行特性.当主线设计速度为100和120km/h时,加速车道需求长度分别为300和430 m.  相似文献   

9.
岑维嘉  刘德华 《科技资讯》2007,(20):100-100
互通式立交是路与路之间连接的交通枢纽,车辆的进出均是通过立交实现的,所以立交处的交通量往往比较大且集中。由于我们目前所建的高速公路在收费方式上基本为封闭式收费,这样在立交的布置上为了便于集中收费,统一管理,大部分采用了将立交的匝道置于高速公路的两侧,通过引线将立交匝道连接起来的,并向前延伸与被交叉公路平面相交的方式。这样在立交引线与交叉公路的连接部处就产生了T型平交口,这部分是互通式立交中的一个重要组成部分,有时甚至是决定整个互通式立交的通行能力、服务水平和交通安全的关键部分。因而在立交设计时,就需要将平交口纳入其总体设计中,进行必不可少地渠化设计。  相似文献   

10.
为明确迂回式立交匝道内行驶速度变化模式以及特征,通过开展实车路试获取了自然驾驶状态下的车辆运行数据,使用mobileye 630采集了33名驾驶员在4条迂回式立交匝道的连续行驶速度,分析了迂回式匝道的速度变化模式、分位值特性以及不同性别、不同风格驾驶员之间行驶速度的差异性,明确了迂回式匝道的速度特征。结果表明:(1)小客车在迂回式匝道的行驶速度变化模式表现为入弯减速、稳定行驶、出弯加速三个阶段,运行速度的离散性随着道路曲率半径增大而增大;(2)速度最低点分布在整个圆曲线段,减速长度与减速终点距离成正相关关系;(3)男性驾驶员在小半径匝道的行驶速度明显高于女性驾驶员;驾驶风格对行驶速度的影响与迂回式匝道线形组合有关;(4)行驶速度值随着匝道半径增大而增加。研究结果可以为匝道几何线形设计和交通运行管理提供科学依据。  相似文献   

11.
为了充分发挥城市外环路对不同车流对象的服务功能,解决两互通式立交之间因间距不够引起的各种交通问题,建立了两独立互通式立交之间的最小净距模型。分析了驾驶人对道路交通信息的发现、识别、分析、判断等心理、生理反应过程,建立了驾驶人车道变换模型,根据调查资料得出运行速度与驾驶人变道转角之间的回归关系,分析了驾驶人在寻找可接受间隙期间行驶的距离,得出了两互通式立交净距的关系模型,并结合深圳外环高速公路进行了实例分析。研究结果表明:距离较近的两互通立交之间宜适当减少非必要道路交通标志的设置;双向6车道设计速度分别为100km/h和80km/h时,互通立交之间的净距不宜小于1 410m和880m;大型车比例较高或交通组织混合严重的互通式立交最小净距宜适当增加180~200m。  相似文献   

12.
为明确车辆在高密度互通立交主线入口、出口以及连接段的纵向运行速度特征,在重庆市选取了5座立交为研究对象,开展了47名驾驶员的小客车实车驾驶试验。通过speedbox和mobileye等实验仪器采集的数据,包括车辆运行速度、纵向加速度等,对数据进行处理并按入口、出口及连接段分类提取数据,绘制出对应的速度曲线图,以明确车辆在高密度互通立交出入口以及连接段的纵向运行特性。分析结果表明:入口处速度趋势有两类,平行式入口是上升—平稳,直接式入口是持续上升,平行式入口速度均值高于直接式,平行式入口速度标准差小于直接式;不同类型入口对驾驶人的加速操作选择具有一定影响;平行式入口在纵向加速度均值上较直接式入口低;出口处速度分布整体呈平稳下降趋势,平行式的运行速度均值低于直接式,但速度标准差却更高;出口速度变化特征点受驾驶人在主线出口减速偏好性影响;平行式出口减速度最大值与均值均大于直接式;相邻立交净距较短时,连接段的速度变化较为平缓,并且不同驾驶人的速度幅值比较接近;而常规净距的相邻立交,连接段的速度波动性大且离散。研究成果为高密度互通立交出入口及连接段的安全性评价以及安全改善提供了理论支撑以及基础数据支撑。  相似文献   

13.
通过2种典型快速路合流区车辆行为观测,发现匝道车辆在选择间隙时存在多次超车行为,表明其汇入过程是一个多次决策的动态过程.根据合流过程中车辆速度的变化特性,判定车辆在选择间隙时的决策点并采集决策点处的微观交通流参数.在此基础上比较了2种不同渠化设计下入口匝道车辆汇入行为的差异.考虑到合流车辆不同行为判别所需的关键参数不同,使用2个支持向量机模型(SVM)进行分类,建立了合流区车辆多次决策的间隙选择模型.通过对采集的交通流参数进行训练,SVM模型的预测精度能够达到91%以上,实现预测车辆间隙选择的目的.最后与Logistic回归模型进行比较,结果证明所提出的模型能够获得较高精度.  相似文献   

14.
为了克服现有合流区加速车道长度计算方法的缺点和合理设计快速路合流区,提出了一种新的合流区加速车道长度的计算方法.首先通过分析合流区交通流breakdown现象与加速车道长度的关系,建立了基于车辆占有率的合流区交通流breakdown事件发生概率模型.然后,利用合流区交通流breakdown事件发生的概率,建立了合流区加速车道长度的计算模型.最终实现了根据合流区主路与匝道交通量计算合流区加速车道长度的新方法.该方法不需要假设合流区主路外侧车道交通流车头时距的概率分布,克服了现有方法的不足.以北京市大羊坊的合流区为例,利用该方法绘制了不同主线交通量情况下合流区发生breakdown事件概率随加速车道长度变化的曲线,为合理设计合流区提供了依据.  相似文献   

15.
一、项目概况国道主干线广州绕城公路东段(广州珠江黄埔大桥)项目是经国家批准建设的重点工程。工程起于广州萝岗区火村,与北二环高速公路及广深高速公路相接,经笔村、黄埔区庙头村,在菠萝庙船厂北侧跨越珠江主航道至番禺区化龙镇草堂村,终点与广珠东线高速公路及广明高速公路相接,路线全长18.694km,路基宽34.5m,按远期八车道高速公路标准建设,设计行车速度100km/h。全线共设特大桥1座、大桥5座,隧道1座,互通式立交5处等结构工程。  相似文献   

16.
一、项目概况 国道主干线广州绕城公路东段(广州珠江黄埔大桥)项目是经国家批准建设的重点工程。工程起于广州萝岗区火村,与北二环高速公路及广深高速公路相接,经笔村、黄埔区庙头村,在菠萝庙船厂北侧跨越珠江主航道至番禺区化龙镇草堂村,终点与广珠东线高速公路及广明高速公路相接,路线全长18.694km,路基宽34.5m,按远期八车道高速公路标准建设,设计行车速度100km/h。全线共设特大桥1座、大桥5座,隧道1座,互通式立交5处等结构工程。  相似文献   

17.
张玉  刘俊  林伟  徐进 《科学技术与工程》2021,21(26):11411-11418
为了提高互通式立交的行车安全,分别对南山立交和江南立交的四条迂回式匝道进行自然驾驶实车试验,共采集了33名驾驶员在不同匝道上行驶的纵向加速度,研究了速度变化阶段纵向加速度特性,分析了迂回式匝道变速阶段纵向加速度统计分布特征,并基于纵向加速度对匝道行车舒适性进行了评价。研究结果表明:(1)迂回式匝道速度变化模式分为三个阶段,分别是入弯减速阶段、稳定行驶阶段和出弯加速阶段;(2)同一匝道上,不同驾驶风格驾驶员的驾驶行为有较高的趋同性,但也有一定的差异,在匝道行驶过程中冒险型驾驶员比愤怒型和焦虑型驾驶员减速明显,男性驾驶员比女性驾驶员减速明显;(3)女性驾驶员行驶舒适性略高于男性驾驶员,入弯减速段行驶舒适性优于出弯加速段,冒险型和焦虑型驾驶员出弯加速阶段行驶不舒适占比接近50%。  相似文献   

18.
为了研究匝道车道数变化过渡段长度和渐变率,参照前人研究成果分析匝道车道数变化过渡段的行车特性,提出利用换道模型研究这2个设计指标的方法。首先建立满足过渡段车辆行驶特征的等速偏移余弦曲线换道模型,并应用德国UMRR交通管理传感器的实测数据证明该换道模型的合理性;然后对该模型中最大横向加速度和最大横向加速度变化率2个关键参数进行深入研究;最后依据该模型,提出基于设计速度的匝道车道数变化过渡段长度和渐变率2个设计指标的推荐值,采用CarSim和TruckSim汽车动力学仿真软件分别建立了小汽车和大货车的仿真模型,利用该模型对提出的推荐值和《公路立体交叉设计细则》(JTG/T D21—2014)(下文简称规范)推荐值进行了对比验证。研究结果表明:基于等速偏移余弦曲线换道模型提出的匝道车道数变化过渡段设计指标,能保证车辆在过渡段沿特定最优轨迹安全、舒适行驶;规范推荐值仅能满足设计速度40km/h车辆的换道行为,此时的货车最大横向力系数为0.142;当设计速度在40km/h以下,横向力系数又远低于允许值,过度段长度浪费;当设计速度大于40km/h时,车辆的横向力系数已经超限,速度达到80km/h时,横向力系数超限达到315%,车辆在这种状态下行驶不安全。鉴于此,可以推测规范推荐值仅能满足设计速度40km/h的车辆行驶,高于和低于此速度时,匝道车道数变化过渡段的指标存在不合理性。  相似文献   

19.
在互通立交匝道平曲线内侧设置护栏,减小了匝道视距横净距,导致运行车辆停车视距不够,威胁行车安全,应将护栏视为视线遮挡物,并进行运行车辆的停车视距检验。可通过匝道视距横净距的计算方法,由已知的横净距,计算出汽车行驶轨迹半径;根据匝道设计速度、实际横净距、停车视距等,计算出匝道在不同设计速度条件下满足视距要求的临界圆曲线半径,并按一般地区对应的停车视距计算确定匝道横净距。已建成的互通立交,若匝道平曲线半径未达到临界值要求,应采取加宽硬路肩、外移护栏等视距改善措施,加宽横净距,或将行驶速度按低一级的设计速度进行合理限制,以提高行车安全性。  相似文献   

20.
鉴于现有的超车模型往往会忽视超车过程中车辆运行特性对超车行为的影响,文中在现有超车模型的基础上,对超车车辆依据车辆运行特性进行分类,设计了双车道车辆超车场景,并考虑不同道路等级的设计时速,建立了计算超车车辆从超车行为产生到超车过程结束所需的超车时间和距离的数学模型.最后,选择不同类型车辆、超车速度及行车速度,分别计算了微型车、小客车和中大型车在双车道公路超车的时间和距离,并与现有的超车模型计算结果进行对比分析.结果表明:双车道公路超车时间和距离与车辆类型、超车速度、超车车辆与被超车辆的行车速度和对向车辆速度密切相关;文中模型由于考虑车辆的运行特性,不同车辆超车所需的超车时间和距离是不相同的,计算结果更符合实际超车现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号