首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为进一步降低猪场示范工程排放废水中COD和氨氮的浓度,本试验尝试以葡萄糖配水模拟猪场废水,在同一个UASB反应器内实现同步的厌氧氨氧化、甲烷化和反硝化反应,以达到同时除碳脱氮的目的。结果表明,接种不同活性污泥于同一个UASB反应器内,经过约48 d反应器启动成功。在完成启动的反应器中添加亚硝酸盐氮和氨氮,使pH维持在7.3~8.3,温度、进水流量、回流量和水力停留时间等均与启动阶段保持一致,可逐步实现同步厌氧氨氧化和甲烷化反硝化。此阶段进水CODCr为500 mg/L,CODCr去除率在80%~90%之间,NO2-N去除率接近100%,氨氮去除率较低且处在波动状态。但是适当降低进水中有机物浓度,可在同时存在亚硝酸盐氮和氨氮的情况下提高厌氧氨氧化菌的竞争能力。当仅降低进水CODCr浓度(由500mg/L降至100 mg/L)时,氨氮去除率能缓慢升至30%以上。  相似文献   

2.
在低基质质量浓度条件下,对海绵填料生物膜反应器和颗粒污泥反应器进行厌氧氨氧化的脱氮性能进行对比研究。研究结果表明:当进水NH4+-N和NO2--N质量浓度分别为(17.03±2.16)mg/L和(19.17±2.33)mg/L时,颗粒污泥厌氧氨氧化反应器的脱氮性能明显优于海绵填料生物膜反应器的脱氮性能;保持对NH4+-N和NO2--N的平均去除率为90%以上时,通过缩短水力停留时间,颗粒污泥反应器容积氮去除速率可达3.55 kg.N/(m3·d),而海绵填料生物膜反应器仅为0.94 kg·N/(m3·d);进水中NO2--N与NH4+-N的质量浓度比能影响反应器的化学计量关系。  相似文献   

3.
采用氢基质生物膜反应器(hydrogen-based membrane biofilm reactor,MBfR)生物去除地下水中的Cr(Ⅵ).MBfR膜表面氢自养还原菌利用氢气作为电子供体,进行自养还原反应,使水中Cr(Ⅵ)还原为Cr(Ⅲ),形成沉淀而去除.通过培养生物膜、改变进水Cr(Ⅵ)质量浓度和氢分压,启动驯化120 d后Cr(Ⅵ)去除率达83%,NO3--N去除率高于99%.3种影响因素的试验研究表明:氢分压、NO3--N负荷和pH值对Cr(Ⅵ)的去除有影响.增加氢分压有利于Cr(Ⅵ)的去除;而NO3--N负荷的增加则导致Cr(Ⅵ)去除效率降低;Cr(Ⅵ)还原对pH值较为敏感,最佳pH值为7.0(最高去除率达78.2%),pH值小于7.0或大于8.0时都会造成去除率显著降低.试验表明,利用氢基质生物膜反应器处理含Cr(Ⅵ)以及NO3--N和Cr(Ⅵ)污染共存的地下水体具有一定应用潜力,关键控制因素有氢分压、NO3--N质量浓度和pH值.  相似文献   

4.
不同电子受体影响下的反硝化除磷过程   总被引:1,自引:0,他引:1  
为进一步了解反硝化除磷菌的代谢行为,以序批式反应器(SBR)在厌氧/好氧条件下培养的活性污泥为对象,进行批次试验,研究了不同电子受体对反硝化缺氧吸磷的影响.结果证实:只要有电子受体存在,不论是硝氮(NO3--N)还是亚硝氮(NO2--N),缺氧吸磷都会发生,但NO2--N的缺氧吸磷量相对较少;反应开始时的电子受体质量浓度对反应过程影响很大,试验中NO3--N质量浓度为30mg/L、NO2--N质量浓度为20mg/L时吸磷量和吸磷速率均达到最高值;低于该值时,吸磷量和吸磷速率随着电子受体质量浓度的提高而增加;高于该值时,吸磷量和吸磷速率随着电子受体质量浓度的提高而减少;NO2--N质量浓度达80mg/L时,没有发现对反应的抑制作用;好氧吸磷效果好于缺氧吸磷.试验还发现反应器在厌氧/缺氧条件下连续运行时,反硝化除磷菌的厌氧释磷和缺氧吸磷能力将很快丧失.  相似文献   

5.
MBBR处理模拟城市污水的工艺条件   总被引:6,自引:0,他引:6  
通过对移动床生物膜反应器处理模拟城市污水的试验研究,探讨了水力停留时间、进水浓度和容积负荷对反应器处理性能和效果的影响,进行了污泥产率和氮平衡的计算,并观察了反应器中的微生物相.试验结果表明:当进水CODCr为200~550mg L、水力停留时间为4h时,CODCr去除率达85%以上;即使在进水有机负荷和NH3 N负荷分别为5.63kg (m3·d)和0.47kg (m3·d)的情况下,NH3 N和TN的去除率也接近40%.  相似文献   

6.
好氧颗粒污泥膜生物反应器处理畜禽废水   总被引:2,自引:0,他引:2  
采用好氧颗粒污泥膜生物反应器处理畜禽废水,分别对COD、NH4 -N、NO2--N、NO3--N的去除效果和对膜通量的影响进行了研究。结果表明:在水力停留时间(HRT)为8h,进水COD浓度为600mg/L,NH4 -N浓度为40mg/L的条件下,出水COD、NH4 -N的浓度分别为46.6和4.8mg/L。NO2--N和NO3--N的去除率也可达90%以上。并且好氧颗粒污泥的加入减缓了膜的污染。  相似文献   

7.
SBR反应器实现半亚硝化的启动策略   总被引:2,自引:0,他引:2  
由于碳源不足,传统脱氮工艺难以处理高NH4+-N低碳氮比废水,采用短程硝化与厌氧氨氧化相结合的工艺可以处理此类废水,而半亚硝化是上述组合工艺的先决条件.采用低溶解氧和半碱度为启动策略,实现SBR反应器的半亚硝化作用,以期为后续厌氧氨氧化反应器提供合适进水水质.实验结果表明:水温(26±1)℃,控制初始碱度和NH4+-N的摩尔比为1,进水pH保持7.5±0.1,溶解氧为(0.8±0.2)mg/L的条件下,可将NO2--N累积率维持在95%,且出水中NO2--N和NH4+-N浓度相近,而NO3--N质量浓度低于5mg/L,反应器成功启动.进水化学需氧量(COD)对半亚硝化效果几乎没有影响.一个运行周期内三氮及COD的变化趋势说明,采用半碱度策略控制半亚硝化进程是可行的,能够保证出水NO2--N/NH4+-N摩尔比约为1.  相似文献   

8.
张健 《海峡科学》2015,(3):39-41,57
厌氧氨氧化工艺是目前已知最简捷的脱氮工艺,该文考察了DO在UASB反应器中对Anammox反应器启动过程的影响。研究结果表明,以厌氧产甲烷颗粒污泥和好氧硝化污泥的混合物为接种污泥,经100 d未除氧运行,成功启动了UASB反应器,TN去除率高达80%以上,TN容积去除负荷稳定在0.24 kg N/(m3·d)。稳定阶段Δm(NH4+-N):Δm(NO2--N):Δm(NO3--N)三者比例为1:1.20:0.22。启动过程中,DO存在对启动过程反应器效能影响不大,但使Anammox反应首先出现在颗粒泥内部,且位于污泥层中部。  相似文献   

9.
研究浸没式厌氧膜生物反应器(submerged anaerobic membrane bioreactor,SAn MBR)处理低浓度生活污水的产甲烷特性,考察运行期间甲烷产率变化以及有机负荷(OLR)与甲烷产生量的关系。结果表明,SAn MBR在中温[(35±1)℃]、p H为6.8~7.2,HRT为6~15 h条件下,甲烷产率最大为0.067 L·g-1COD。在进水OLR为0.29~2.85 kg COD/m3·d-1条件下,甲烷日产生量和累积甲烷产生量与OLR呈线性相关,拟合方程分别为甲烷日产生量=0.3OLR+0.23(R2=0.89)和累积甲烷产生量=29.8OLR-5.45(R2=0.81)。对反应器甲烷产生量通过支持向量机进行模拟预测表明,反应器甲烷产生量可长期保持稳定,反应器耐冲击负荷能力较强。  相似文献   

10.
研究了上流式厌氧复合床反应器(UASBF)处理垃圾渗滤液的启动及CODCr负荷、pH、碱度、挥发性脂肪酸(VFA)对污泥颗粒化过程的影响。实验表明,最佳启动温度在35±1℃,进水pH 6.8,CODCr质量浓度1000~1200mg.L-1,水力停留时间(HRT)48h,容积负荷0.5kgCODCr.m-3.d-1。根据处理效果不断增加反应器的容积负荷,缩小HRT。经过150天运行,完成了污泥颗粒化。进水CODCr质量浓度3500mg.L-1,容积负荷7.6kgCODCr.m-3.d-1,产气量14.8L.d-1,CODCr去除率69%。颗粒污泥形状不规则,一般为球形或椭球形,粒径为1~2mm。  相似文献   

11.
短程硝化反应器的快速启动与运行特性   总被引:5,自引:0,他引:5  
为了探讨快速启动和运行特性,以硝化污泥接种序批式反应器,在纯自养条件下利用短程硝化处理高NH4 -N废水。实验结果表明,控制溶解氧(d isso led oxygen,DO)浓度为0.5 m g/L、游离氨浓度11.8~49.1 m g/L时,反应器的启动在第13 d完成。在曝气量为800 mL/m in时,利用pH与DO的变化趋势来判断氨氧化进程,控制每周期曝气时间为6.0 h,反应器稳定运行了101个周期。NH4 -N平均去除率为82.6%,NH4 -N去除负荷最大为0.97 kg/(m3.d),NO2--N平均累积率达97.2%,NO3--N浓度小于10 m g/L。在反应器中利用纯自养微生物可以长期稳定地实现短程硝化反应。  相似文献   

12.
春季太湖水域无机氮湿沉降来源初探   总被引:4,自引:0,他引:4  
对2003年春季太湖站降雨资料进行分析,结果表明春季太湖水域NO3--N、NH4 -N的平均浓度分别为0.9和1.6mg/L。NO3--N与降雨量的相关系数是NH4 -N的两倍。利用气团后向轨迹分类法以及天气形势得到春季影响太湖流域的主要是海洋性降水,春季海洋性降水中NO3--N、NH4 -N沉降通量分别为1.01 kg/hm2、1.95kg/hm2,而大陆性降水中NO3--N、NH4 -N沉降通量分别为0.13和0.26 kg/hm2。同时利用气团后向轨迹,在海洋性过程中对云下气团进行分类,结论是北方气团对太湖水域氮的输送及沉降负荷最大,NO3--N、NH4 -N的沉降量分别占总沉降量的53.5%和57.9%,西南气团次之,NO3--N、NH4 -N的沉降量分别占总沉降量的34.6%、32.8%,局地气团最小,NO3--N和NH4 -N的沉降量分别只占总沉降量的11.9%、9.3%。  相似文献   

13.
在系统分析青霉素废水水质的基础上,研究了膜生物反应器工艺处理高浓度青霉素废水时的启动特点及影响因素,得到进水CODCr容积负荷应控制在2.5-3kg/(m^3·d),污泥浓度在7~12g/L之间运行较为合适。  相似文献   

14.
应用两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)深度处理早期和晚期垃圾渗滤液.首先在一级UASB(UASB1)中实现反硝化,在二级UASB(UASB2)中通过产甲烷降解有机物,在A/O反应器的好氧区进行NH4+-N的硝化,最后在SBR中去除残余NH4+-N及通过反硝化去除NO2--N和NO3--N深度脱氮.试验结果表明:早期渗滤液ρ(COD),ρ(TN)和ρ(NH4+-N)分别为14.8,1.8和1.3 mg/mL,最终出水ρ(TN),ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)分别为28,4,3.4和1.9 mg/L,获得了大于98%的TN和NH4+-N去除率.晚期渗滤液ρ(COD)为2.5 mg/mL;ρ(TN),ρ(NH4+-N)分别为3.0和2.9 mg/mL时,获得99%以上的TN和NH4+-N去除率.最终出水ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)都小于10 mg/L,最终出水ρ(TN)为26~32 mg/L.  相似文献   

15.
微藻生物质厌氧消化生产氢气和甲烷效率低下,本研究报道了一种新型微藻处理工艺即两段式暗发酵提高氢气和甲烷产量。结果表明微藻生物质的最佳有机负荷为10 g/L,相应的氢气产量为18.6 mL/g (每克挥发性有机质产气量)。进一步研究表明蛋白酶预处理能进一步提高水解酸化相中氢气的产量至35.5 mL/g,反应pH最低为6.0。同时,蛋白酶预处理能够提高产甲烷相中甲烷产量,并且最大产量为251 mL/g,显著高于空白对照组。机理研究表明两段式消化分别为水解酸化相和产甲烷相提供最佳环境。  相似文献   

16.
微藻生物质厌氧消化生产氢气和甲烷效率低下,研究了一种新型微藻处理工艺即两段式暗发酵提高氢气和甲烷产量。结果表明微藻生物质的最佳有机负荷为10 g/L,相应的氢气产量为18.6 mL/g(每克挥发性有机质产气量)。进一步研究表明蛋白酶预处理能进一步提高水解酸化相中氢气的产量至35.5 mL/g,反应pH最低为6.0。同时,蛋白酶预处理能够提高产甲烷相中甲烷产量;并且最大产量为251 mL/g,显著高于空白对照组。机理研究表明,两段式消化分别为水解酸化相和产甲烷相提供最佳环境。  相似文献   

17.
构建了新型气升式一体化A/O生物膜反应器用于生活污水的脱氮处理,考察了进水碳氮比和曝气速率对反应器硝化和反硝化的影响.试验结果表明,一定曝气速率条件下,反应器硝化效果随着进水碳氮比的提高而下降;提高曝气速率可以增加反应器好氧区和缓冲区的DO浓度,降低有机物氧化对硝化作用的影响;低进水碳氮比条件下,进水中的有机碳源能在缺氧区作为反硝化反应的电子供体被有效利用;在进水TN负荷为0.01 kg/(m3.d)、有机物负荷为0.26~0.76 kg/(m3.d)、进水碳氮比为2.7~5.3条件下,反应器COD和TN去除率分别达到96.0%和80.0%.  相似文献   

18.
试验研究了IC反应器处理洗毛废水的启动过程。接种污泥采自嘉兴市某造纸膨胀颗粒污泥床(EGSB)反应器,接种量为20L左右。研究结果表明,采用连续进水,保持进水COD浓度不变,通过改变进水速度以提高容积负荷的方式可在37d完成IC反应器的启动,容积负荷能达到8kg COD/(m3.d),COD的去除率可达70%~0%。启动过程中,VFA的浓度逐渐降低,反应器稳定运行时,VFA的浓度稳定在200mg/L左右。启动结束后,IC反应器内的成熟颗粒污泥沉降性能良好,颜色深黑色,粒径较大,其中粒径在2~4mm之间的占了约51%。  相似文献   

19.
通过实验研究了在不同盐质量浓度、碳氮比和HRT条件下,高盐含氮废水的反硝化过程中碳源加入、TN、NO3-N和NO2-N的变化规律.分析结果表明:废水反硝化污泥在UASB反应器中经过驯化后可以适应氯离子质量浓度为0~20 g/L的盐质量浓度环境.脱氮性能随着HRT增加和进水C/N增加而提高;而NO2-N积累也随着HRT增加和进水C/N增加而降低.经过优化反应条件,较适宜的条件为进水C/N=3∶1,HRT=7.08 hr.  相似文献   

20.
利用SBR反应器,控制曝气量为60 L/h,考察实际生活污水在不同分段进水模式下短程脱氮过程中N2O的产量.结果表明:N2O主要产生在硝化阶段;随着分段进水段数的增加,NO2-的积累减少.不同进水方式下SBR短程脱氮N2O产量不同,3种进水方式N2O产量由小到大顺序为:3次进水,2次进水,1次进水.其原因是由于氨氧化细菌(AOB)主要是以NO2-为电子受体,以还原性氢或者氨为电子供体进行好氧反硝化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号