首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
亚波长光栅的可见光共振特性研究   总被引:1,自引:1,他引:0  
研究亚波长光栅的可见光共振特性. 分析了光栅共振的基本原理. 基于严格矢量衍射理论给出了不同光栅参量(如光栅周期、填充因数、光栅深度、光栅材料等)的优化设计图,定量得出了各参量控制光栅共振特性(共振波长和半峰全宽)的一般规律,共振波长与光栅周期成比例. 共振半峰全宽值主要依赖于光栅调制系数和波导光栅对导模的限制程度,填充因数和光栅深度也对其有一定的影响,为新型防伪光栅设备的开发提供了理论依据.  相似文献   

2.
基于弱反射光纤布拉格光栅应变传感器,建立了光栅反射光谱仿真模型。分析了光纤光栅的长度、周期和排列顺序对光栅反射率的影响,发现光栅的最大反射率随光栅长度和调制深度的增大而变大;而光谱宽度受光栅长度变化的影响较大,光栅长度越小,光谱宽度越大。弱反射光栅阵列的峰值反射率与光栅位置有关,受多重反射影响,越下游的传感光栅,峰值反射率越小。通过分析解调过程中的反射光谱,得到了传感器所受应变与输出光强的函数关系。  相似文献   

3.
利用光栅标量衍射理论的数值求解法,研究一种可以包埋蛋白质分子的梯形聚合物光栅,用于制作光学生物芯片.通过分析二元光栅结构参数和折射率的变化对±1级和0级衍射光强比的影响,获得优化的光栅结构参数:光栅凹槽深度h0为0.6μm;光栅周期d为4μm;工作波长λ为632.8nm;聚合物折射率n0为1.522;两斜边角度α1为31°,α2为90°;占空比v为0.7;埋入核酸适体厚度h为0.05μm.  相似文献   

4.
透射型亚波长二元闪耀光栅的数值模拟与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
使用OptiFDTD对透射型亚波长二元闪耀光栅的透射场进行了数值模拟;使用FFT方法对电磁场分量进行分析,得到其各个级次的能量分布,进而分析了亚波长结构二元光栅的各个参数对衍射性能的影响。分析结果证实:透射型亚波长二元闪耀光栅可将正入射的TE波闪耀到 1级,且等分数对衍射角影响很小。给定波长,其设计主要由光栅周期、光栅材料折射率和等分数这3个参数决定。  相似文献   

5.
亚波长光栅作为一种新颖的光学器件可以实现光束的偏转、功分、会聚、偏振分束等功能.针对空间光的耦合以及微型激光器输出光的束型需求,本文提出了一种具有透射光束会聚效果的一维亚波长光栅,通过对亚波长光栅的结构设计,控制亚波长光栅的波前相位使得亚波长光栅具有高的透射率,以实现透射光束的会聚效果.利用有限元分析法(FEM)对设计的一维非周期亚波长会聚光栅数值进行仿真,结果表明:仿真焦距在10μm处的光束会聚的透射光栅,仿真得到的实际焦距fx为7.715μm,透射率为81.8%.因此,利用有限元法设计的非周期光栅对发散光束具有优异的会聚效果,有望在光通信器件的集成以及空间光耦合领域得到重要应用.  相似文献   

6.
基于严格耦合波分析设计了一种亚波长金属偏振分束光栅,通过遗传算法优化出最佳光栅结构。该光栅在1429λ1700nm波段,TM波的0级透射率和TE波的0级反射率优于90%,入射角-27.5°θ27.5°时,光栅透射和反射消光比都大于20dB,达到了宽光谱、宽视角的要求。数值分析表明光栅对周期、槽深具有优良的工艺容差。  相似文献   

7.
李杰 《厦门科技》2006,(2):59-62
由光栅周期的不同.光纤光栅可分为布喇格光纤光栅(FBG)和长周期光纤光栅(LPG)。FBG的周期约为几百纳米.主要特性是将某一频段的光反射回去.形成以谐振波长为中心的窄带光学滤波器,LPG的周期通常为几十到几百微米,主要特性是将导波中某频段的光耦合到光纤包层中损耗掉,是一种透射型光纤器件。LPG对于温度、应力、外界折射率等参数的变化都有很高的响应灵敏度,研究表明,LPG对于温度的调协范围约为FBG的7倍.而对于外界折射率变化时的谐振峰中心波长移动量也明显高于布喇格光栅。  相似文献   

8.
作者对扩展边界条件法(EBCM)进行了参数校正处理,以拓宽扩展边界条件法的适用范围。通过对亚波长正统光栅进行数值计算,在光栅深宽比达1.05的情况下,获得稳定收敛的结果,并与反射透射系数阵法(RTCM)的计算结果一致。  相似文献   

9.
提出了一个基于光纤光栅的外腔半导体激光器多波长输出的理论模型.理论分析表明,只要使光纤光栅外腔在多个波长提供反馈且各个波长处的反射率大小满足一定的分布就能实现多波长输出.在此基础上,推导出了要实现多波长输出,不同波长处光纤光栅的反射率大小分布和多波长输出带宽的解析式,并进行了数值分析.  相似文献   

10.
根据Turan Erdogan耦合模理论,从普通单模光纤Bragg光栅的耦合模方程出发,推导了前向基模与后向基模的幅度、均匀光栅反射率及传输矩阵的表达式,并且为了方便传输矩阵的推导,在边界条件的处理上采用了与一般文献不同的方法.在此基础上用传输矩阵法对取样均匀光纤Bragg光栅进行了理论分析,并依据此方法对取样光栅的反射谱进行了数值仿真,通过对仿真结果的比较,总结了"净光栅"长度、占空比T、取样周期p等参数对取样光栅反射谱特性的影响.  相似文献   

11.
光纤光栅梳状滤波器的优化设计   总被引:2,自引:0,他引:2  
利用传输矩阵对光纤光栅梳状滤波器的原理进行了推导,并结合数值法解方程组总结出取样光栅的光谱特性,为优化设计多波长光纤光栅滤波器提供理论依据。文中列举了设计8波长光纤光栅滤波器的参数,还提出了用相同周期的振幅掩模板错位重叠法来得到不同的占空比的制作方法。  相似文献   

12.
文章对采用高频CO2激光脉冲写入的长周期光纤光栅(LPFG)的透射谱进行了理论分析,把LPFG的折射率调制类型近似为倒三角波,研究了其谐振波长与占空比的变化关系,发现高阶包层模与低阶包层模具有完全不同的特点,在参数变化时两者的谐振波长向相反的方向移动.通过实际制作周期500 μm的光栅验证了这种差别.  相似文献   

13.
提出了一种亚波长双光栅结构,并用涂布及全息干涉光刻的方法制作了该结构,检验了其共振光谱的特征.分析了亚波长光栅的共振光谱和角谱的带宽展宽、线形改善的原理,用数值模拟的方式研究了双光栅和亚波长光栅的共振光谱和角谱的带宽展宽、线形改良的规律.研究表明:双光栅是性能较好的防伪光栅微结构,可以展宽亚波长光栅的共振光谱、角谱的带宽并能改善光谱线形,获得更佳的彩色光变效果.  相似文献   

14.
结合亚波长光栅的实际制作工艺,使用耦合波理论进行计算,对影响亚波长光栅零级衍射效率的各个参数进行了全面的分析,排除影响较小和实际无影响的参数,着重对影响较大的几个参数进行分析计算,完成了具有所期望零级衍射效率特性的用于光变色防伪技术的亚波长光栅的设计和制作,样品光栅零级衍射效率的测量结果验证了理论计算结果.  相似文献   

15.
把亚波长光栅的全反射特性与干涉薄膜的减反射特性相结合构成“合成亚波长微结构薄膜”,用矢量衍射理论,从理论上探讨了MSMF制作窄带高反射滤波器的可靠性。结果表明,这种滤波器具有反射率峰值高,旁带低和相对半宽度窄的特点。  相似文献   

16.
介绍了国外光栅研究的最新进展和光纤光栅被应用于光通信系统中的新动向。阐明了布拉格光栅可以通过位于244nm的二束紫外光(UV-Laser)从光纤侧面对光纤曝光直接被写入光纤的芯中;分析了光纤光栅产生的原因,并指出光纤光栅具有很高的反射率,可以将这种布拉格光栅做为频率反射镜;还系统地分析了光纤光栅应用于光通信系统中的光源、放大器、波分复用(WDM)以及光孤子(Soliton)通信的原因  相似文献   

17.
研究可见光波段亚波长防伪光栅的制做.给出了用2θ夹角一次光刻、2θ夹角摆动δ角两次光刻和2θ夹角旋转β角两次光刻等干涉光刻工艺设计和构建可见光波段亚波长光栅微结构的基本原理.优化设计的干板表面曝光量分布函数可用于构建特定面形分布的光栅微结构.制作了可见光波段的1维和2维亚波长光栅微结构,给出了其SEM和AFM实验数据和理论分析图形,检验了微结构的彩色防伪光变效果.实验结果表明:该干涉光刻工艺能够构建出表面光滑、深度较大的复杂光栅微结构,并能展现出一定的彩色光变效果.  相似文献   

18.
报道了光纤布喇格光栅生成过程中的布喇格波长,反射率和带宽与曝光时间的关系,并作了讨论,采用位相板方法,光源KrF准分子激光器(248nm)光纤:SMF-28经氢载敏化。  相似文献   

19.
采用严格耦合波法与时域有限差分法数值模拟仿真相结合的办法,对由亚波长光栅及其衬底厚度变化影响的导模共振传感进行了研究。其结果表明:1、在优化光栅膜厚的基础上,通过改变光栅衬底厚度来调节导模共振的产生位置处于由于该膜厚变化产生的背景反射极小位置处时,可使导模共振峰的旁带抑制比提高,从而提高该光栅传感器的分辨率;2、在对高折射率样品进行检测时,该光栅传感器的分辨率、灵敏度均较折射率低样品好,但由于高折射率样品导致导模共振场的局域性增强,从而导致获得的反射率降低。  相似文献   

20.
对色散补偿啁啾光纤光栅耦合模方程进行了理论研究,提出了耦合模方程的一种解法。讨论了光纤光栅的透射率和反射率是位置函数的问题,进一步研究了啁啾光栅色散补偿器的耦合系数和色散系数。研究结果表明:啁啾光纤光栅的反射率不仅与光栅的模式耦合系数有关,同时也与变周期有关;减小光栅的模式耦合系数可以增大耦合效率和提高光栅反射率。对于色散补偿器来说,它的带宽必须大于光脉冲的带宽,啁啾光栅的带宽越窄,它的色散系数就越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号