首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基于FPGA的DDS信号源设计与实现   总被引:9,自引:0,他引:9  
利用DDS和FPGA技术设计一种信号发生器.介绍了该信号发生器的工作原理、设计思路及实现方法.在FPGA器件上实现了基于DDS技术的信号源,并可通过键盘控制其输出波形的各种参数,频率可控范围为100 Hz~10 MHz,频率调节步进为100 Hz,频率转换时间为25 ns.  相似文献   

2.
DDS专用芯片AD7008为核心的正弦波发生电路和Philips P89C52单片机构成控制电路,可以完成AM,FM,ASK,FSK和PSK等调制电路.使用单片机对DDS的控制使信号产生具有数字可控制性,解决了调制信号的载波频率、调制度和控制方式不能程控的难题,使数字控制产生的正弦信号和调制信号具有极高的稳定性和可靠性.本设计用了易于购买和使用集成芯片,使设计的软硬件简单,极大地提高了性价比.  相似文献   

3.
采用DDS芯片AD9851,产生1 kHz~10 mHz范围、频率步进100 Hz可调、输出峰峰值在6 V的正弦波基本信号.以AVR单片机Atmega16为控制核心,结合FPGA辅助逻辑控制电路(产生1 kHz的正弦调制信号和二进制基带序列信号),对实现的正弦波基本信号进行幅度、频率、相位调制和调制度及频偏的程序控制.该设计具有频带宽、精度高、性能稳定、成本低和操作界面友好等特点.可作为教具和科研用仪器.  相似文献   

4.
此设计以STC89C52单片机为核心控制单位,主要控制AD9850芯片、1602液晶和矩阵键盘这3个单位,键盘输入频率的同时1602液晶实时显示输入情况,确认输入完成后AD9850芯片立即输出相应频率的信号.输出信号再通过其他外围电路实现幅度的放大等功能.经实际检测此设计,从功能上解决了普通函数信号发生器的不足.其输出信号精度可以达到0.1Hz,液晶能实时显示输入频率,且操作简单快捷.  相似文献   

5.
智能测试系统中频率相位发生器的设计   总被引:1,自引:0,他引:1  
介绍了基于可编程DDS芯片AD9850设计的高精度频率相位发生器.通过计算机串口发送频率相位更新字,经过MAX232电平转换,再由单片机对数据格式进行转换后送入AD9850,从而产生所需的信号。  相似文献   

6.
主要研究设计了PLL+DDS环外混频混合频率综合器中的带通滤波器,系统把DDS与PLL经混频器混频后,通过窄带带通滤波器滤波,得到了所需中心频率的输出信号.为了缩短设计周期,提高微带线带通滤波器的性能,通过ADS中的无源电路设计向导,设计出了一种中心频率为2.5GHz,带宽为65MHz,阻带频率在2.375GHz和2.625GHz处衰减幅度大于50dB的平行耦合微带线带通滤波器.最后经过实物测试表明,设计出的平行耦合微带线带通滤波器满足各项指标要求.  相似文献   

7.
基于DDS芯片的信号源应用设计   总被引:2,自引:0,他引:2  
结合DDS器件AD9854的结构原理和功能特点,设计了利用AVR单片机ATmega 128控制AD9854实现的程控信号源电路,并针对ATmega128与AD9854之间的硬件接口电路和键盘控制电路,设计了可方便实现对信号源输出频率、相位以及信号源工作模式的控制,使之输出高稳定度、高分辨率的信号.  相似文献   

8.
为了实现幅值和频率在一定范围连续可调,频率步进达到1Hz以下信号发生器的设计.采用直接数字频率合成技术(DDS),介绍根据直接数字频率合成技术组成及原理,给出了基于可编程逻辑器件FPGA及相应EDA软件QuartusⅡ实现DDS的具体设计方案及编程实现方法.通过改变设计参数可以调节所产生波形频率和幅度;通过改变ROM查找表中波形数据可以产生任意波形.利用FPGA器件设计DDS,大大简化了电路设计过程,缩短了调试时间,并为修改、添加DDS的功能提供了方便.  相似文献   

9.
基于直接数字频率合成技术(DDS),采用AT89S51单片机实现对DDS集成芯片AD9852的控制,产生频率和幅度可控的正弦信号,重点介绍了硬件电路设计以及频率、幅度控制的关键技术。  相似文献   

10.
基于AD9852多模式信号的应用研究   总被引:1,自引:1,他引:0  
针对DDS器件AD9852的功能特点,设计了通过AVR单片机ATmega128控制AD9852芯片实现的程控信号源电路,并对ATmega128与AD9852之间的硬件接口电路以及软件功能的实现进行了介绍.通过此设计可以方便地实现对信号源输出频率、相位和AD9852各种模式的控制,使之能输出高稳定度、高分辨率和多模式的信号.  相似文献   

11.
基于单片机控制的数字函数信号发生器的设计与实现   总被引:3,自引:0,他引:3  
采用直接频率信号合成器(DDS)与单片机(MCU)相结合的方法,以AD9850为频率合成器、AT89S52单片机为进程控制和任务调度的核心,设计了一个信号频率和幅度都能预置、频率稳定度优于10-6的函数信号发生器.详细介绍了DDS基本原理、系统方案构成、硬件电路设计和软件设计.通过严格的实测数据分析表明该设计是可运行的.  相似文献   

12.
基于AD9858的DDS+PLL频率合成器   总被引:2,自引:0,他引:2  
基于锁相频率合成技术(PLL)和直接数字频率合成技术(DDS)各有其优缺点,文章将两者结合,提出设计方案,并给出了主要的硬件电路设计,以产生符合预期要求的雷达信号。设计以AD9858为核心器件,输出DDS频率信号,为PLL提供参考输入信号。PLL中的鉴相器采用ADF4107,同时利用FPGA对两者进行方便的控制,可以获得较快的频率转换时间,相位噪声为-90dBc/Hz且杂散优于-70dBc的雷达信号。最终得到一个综合指标较高的系统。  相似文献   

13.
为解决单通道干涉仪测向系统中传统数字移相器对参考天线输出信号移相时移相精度不高的问题,基于直接数字频率合成技术(DDS)和混频技术,提出了一种新的数字移相技术。该技术采用两级混频结构,分别进行下变频和上变频。两级混频器的本振信号均由DDS信号发生器产生,通过调节本振信号的相位差,实现对一定频率范围内的输入信号进行0°~360°相位偏移。采用FPGA评估板、DAC FMC子卡、混频器、滤波器等模块制作了输入频率范围为432~434 MHz的移相器样机,对该方法进行了验证,实现了输入信号的0°~360°移相,移相步进小于0.09°,实测误差的均方根(RMS)小于0.8°。  相似文献   

14.
利用直接数字频率合成技术设计信号发生器,输出的信号频率分辨率高、相位信息连续、频率转换的时间短、可靠性高等优点。系统以单片机和DDS芯片为核心,采用高性能的单片机实现整个电路的控制。本文介绍了DDS的典型结构,根据需求选择性价比较高的DDS芯片AD9852。最后给出DDS信号源设计的结构图。本系统通过软件编程和较少的辅助电路实现信号发生器的功能。  相似文献   

15.
基于DDS的多波形发生器   总被引:1,自引:0,他引:1  
本系统由AD9833、单片机控制模块、键盘、LCD液晶显示屏和放大电路构成。波形产生以AD9833数字式频率合成器(Direct Digital Frequency Synthesis,简称DDS或DDFS)为核心,经过AT89S52对DDS芯片内部进行控制,使之输出标准波形,利用编程实现频率预置、步进,达到电压输出频率的可调节步进。整个系统结构紧凑,电路简单,功能强大,可扩展性强。  相似文献   

16.
李雪梅  黄丽 《科技信息》2012,(35):127-128
采用直接数字频率合成技术子设计了一种电力载波测试信号源。该信号源采用GY7G68013单片机控制AD9850DDS芯片产生频率可调的电力载波测试信号,其频率范围为100—600kHz宽、频率分辨率为0.1Hz,输出信号频率误差优于10—4,输出幅度误差优于10-1,且频率转换时间短,使用方便。  相似文献   

17.
本设计应用可编程逻辑器件FPGA,设计一个DDS信号发生器的频率字输入和波形与频率显示模块.采用多个按键输入频率,其中每个按键处理十进制频率中的一位数字的输入,同时使用累加方式算出相应的频率字.与大多数DDS信号发生器采用的FPGA+单片机方案相比,既节省了成本又充分利用FPGA内部资源.  相似文献   

18.
一种程控放大滤波器设计   总被引:1,自引:0,他引:1  
利用AD620仪表运放、TL084、DAC转换器MAX527、可编程有源开关电容滤波器LMF100及DDS集成芯片AD9854等,设计了以单片机为控制核心的交流小信号程控放大和程控滤波器,程控滤波可实现四阶高通、低通以及带通滤波,放大器增益和低通、高通截止频率均可实时键盘调整,并介绍了设计的详细方法和原理.  相似文献   

19.
本文设计的信号源应用于的穿墙雷达系统中。介绍了DDS+PLL信号发生原理,分析并采用DDS激励PLL方法完成系统设计。使用了直接数字频率合成器AD9898锁相环频率合成器与AD4113等高集成度芯片设计重点阐述了系统的硬件实现,包括系统原理、主要电路单元设计,实现了频带为1~2GHz的步进频率信号源。  相似文献   

20.
针对高频信号源直接数字频率合成存在较多杂散信号和较窄输出频带等问题,提出了一种频率和相位可编程的智能信号发生器设计方法。该系统的波形发生器采用DDS芯片AD9833,通过单片机编程控制,可实现正弦波、三角波和方波等多种波形输出。输出频率相对误差数量级为10-5时,正弦波最高频率为10 MHz,最低频率为10 Hz;方波和三角波最高频率为5 MHz,最低频率为100 Hz。仿真结果表明,该系统具有杂散信号小、输出频带宽、精度高、切换速度快等特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号