首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
为保障新能源电池的安全、高效运行和长循环寿命,需要对电池包进行有效热管理.利用高导热性的热管制备了散热装置来对锂离子电池包进行热管理,并在电池循环充放电条件下,研究3种散热方式的热影响规律.结果表明,热管散热装置能有效降低电池包的温度,同时减小电池包内各个电池间的温差;与自然对流散热条件相对比,在强制对流条件下加装热管散热装置能将电池包内最高温度从78.1℃降低到48.6℃,电池包内外电池间的温差也保持在2.5℃以下.  相似文献   

2.
为提升动力锂电池包的散热性能和能量密度,基于半导体制冷方案,提出一种多目标优化设计方法,对动力锂电池包的排布间距和半导体制冷量进行优化设计。基于建立的半导体制冷方案的热分析模型,采用拉丁超立方试验及径向基函数(radial basis function, RBF)、响应面法(response surface methodology, RSM)、Kriging代理模型方法建立最高温度、最大温差及间距体积的近似模型。以最大温差和间距体积为目标,最高温度为约束建立电池包散热优化模型,运用多目标遗传算法(multi-objective genetic algorithm, MOGA)进行寻优求解,并通过实验验证优化方案仿真结果的可靠性。优化后仿真结果表明:电池模组间距体积减小了32.42%,最大温差降低了13.64%,最高温度降低了0.53%,该方法显著地提升了电池包的散热性能和能量密度。  相似文献   

3.
文章描述了锂离子电池的生热机理,建立了锂离子电池组风冷散热结构的三维仿真模型,应用计算流体力学(computational fluid dynamics,CFD)方法分析了电池组温度场分布,得出电池组最高温度和温差都对放电电流比较敏感;提出了电池组散热通道改进方案并进行了仿真分析,结果表明改进方案使电池组散热效果明显提高;探讨了入风口风速对电池组散热情况的影响,结果表明提高入风口风速可以有效提高电池组散热效果,但是当风速超过一定范围(10m/s)时,风速继续提高对电池组散热效果的改善逐渐下降。  相似文献   

4.
为了开发更高效的储能风冷热管理方案,以锂电池包为研究对象,提出了一种“侧向间隙进风,前端出风”的新型强制风冷散热系统。采用数值方法研究了进口速度、高度和温度对于该风冷系统散热性能的影响。通过实验测量对数值计算进行了验证,实测结果与仿真结果显示了良好的匹配性。研究结果表明:在该强制风冷系统下,电池温度敏感区位于最前和最后端电芯。该区域温度最高,而循环涡的产生有助于降低该处温升;相比于端部电芯,位于中部的电芯表面温度较低,且温度分布更为均匀;进口速度和高度的增加不同程度地降低了电芯整体的温升和温差,而进口温度变化对于温升和温差的影响并不明显。  相似文献   

5.
为了改善车用锂电池模组在高温高倍率工况下的热均衡性,根据圆柱形锂电池的传热特性,建立了18650锂电池单体的三维热模型,并完成40 °C环境自然对流下的热特性仿真,并通过温升试验验证了生热模型的可靠性. 在此基础之上,针对某型纯电动汽车的动力电池组,提出了一种夹套式电池模组冷却系统,利用Fluent研究了40 °C环境下冷却液流量、冷却液温度和放电倍率对电池组散热均衡性的影响. 结果表明:增加冷却液流量可以有效降低电池组最高温度、最大温差及电池自身温差,改善电池间的温度均匀性;但当入口流量增至0.03 kg/s后,对电池组散热性能的改善效果十分有限;降低冷却液温度后,电池组最高温度下降,但电池组最大温差与单体电池间温差不断上升,单体电池自身最大温差略有降低;当放电倍率增大时,电池组最高温度与最大温差均不断上升,单体电池间温差以及电池自身温差显著增大,电池组热均衡性变差.   相似文献   

6.
针对现有风冷系统和串联回路水冷系统在降低电池组最高温度和减小单体电池间最大温差不足的问题, 提出了一种并联回路形式的水冷系统。 在分析锂离子电池生热机理的基础上, 建立电池的温度模型, 并在 AMESim(Advanced Modeling Environment for Performing Simulation)软件中搭建并联回路的电池组水冷系统, 同时 通过仿真实验与串联回路水冷系统进行散热性能对比。 其结果表明, 联回路形式的水冷系统散热效果更好, 在 维持电池组最高温度的基础上, 有效减小了单体电池间的温差, 并为进一步研究并联回路水冷系统的控制算法 打下基础。  相似文献   

7.
为解决锂离子电池组充放电温度过高及温度分布不均的问题,建立了锂离子电池组空气冷却散热模型,对在不同进风速度、温度及放电倍率条件下的双层布置锂离子电池组散热进行了计算。结果表明:进风速度增大,电池组最高温度与温差下降,散热性能增强,当进风速度超过2 m/s时,电池组散热性能强化趋势减弱;进风温度降低,电池最高温度降低,但温差变化不明显;电池组放电倍率增大,电池组最高温度以及温差急剧上升,散热性能降低。  相似文献   

8.
锂离子电池的工作温度需要保持在合适的范围内,才能获得更好的性能和更长的使用寿命。本文提出了一种平面热管与液冷相结合的锂离子电池热管理系统,通过搭建的锂离子电池发热功率测试平台确定不同放电倍率下单体电池的发热功率,建立热管理系统三维有限元模型,分析不同放电倍率、冷却液流量及冷却液流动方向对散热性能的影响。结果表明,在3 C放电倍率下,最高温度可以控制在50 ℃以下。与相同进液方向相比,不同进液方向下电池包最大温差降低了17.30%。  相似文献   

9.
针对锂离子电池均温性差和液冷系统能耗高等问题,以方形锂离子电池为研究对象,在电池单体模型验证的基础上,设计了串并对称式液冷流道的锂离子电池散热结构,对比了5种流道方案,在优选方案四的基础上,分析了液冷板中的液冷流速、铝板厚度组合和液冷系统的启动时间对电池散热效果和液冷系统能耗的影响.结果表明:与方案一的流道形状S0对比,方案四的流道形状S3能够将模组中电池单体的最大温差降低15%;此外,电池的最高温度随着液冷流速的增加呈现先减小后平缓的趋势;在保证液冷系统总质量不变的前提下,与初始的铝板厚度组合h0对比,调整后的铝板厚度组合h4可将电池模组的最大温差降低12%;电池在2.5C放电时,延迟液冷系统启动时间至563 s,既可以保证电池在最佳的工作温度范围内,又能节约液冷系统约39%的能耗成本.  相似文献   

10.
针对锂离子电池在高倍率放电下温度过高的问题,设计了一种新型细小通道冷却板,并利用计算流体力学(computational fluid dynamics,CFD)进行了电池组散热仿真分析.对比了不同流道形式冷却板的冷却效果,优选出效果较好的流道形式,并以此为基础,综合对比了冷却液入口质量流量以及流道结构参数对电池组温度的影响.结果表明:串并联结合的流道形式具有更好的温度表现以及较小的压力损失;冷却液质量流量的增加会带来更好的温度表现,但影响会逐渐变缓;流道宽度的增加会使电池平均温度下降,并提升温度均匀性,电池最高温度呈现先降低后略微上升的趋势;流道高度的增加会降低冷却液流速,造成电池最高温度以及温差的升高.  相似文献   

11.
随着国家对环保的越发重视,节能与新能源汽车的车型和产量急剧增加,对动力电池包的防护等级和使用寿命的要求越来越高。而电池的使用寿命与所处的温度有很大关系,温度适中,其寿命越长,温度越高寿命越短。本文主要研究圆柱型镍氢电池的电池包设计方案,新开发一种全新的使用浸液冷却的电池包,通过对浸液电池的性能测试,部件的结构设计,热仿真设计及台架和第三方测试验证,有效控制电池温度和提高电池包的防护等级,方案可行,对镍氢电池包后续使用浸液散热提供依据和指导。  相似文献   

12.
电池在充放电过程中会因自身特性产生热量,若热量不能及时排出,则会造成热量的累积,致使电池工作环境温度升高,温度过高会对电池的性能产生影响,为保证电池尽可能工作在适宜的温度条件下,在进行电池包设计时,需着重设计电池包的散热结构。本研究以某乘用车用动力电池包散热结构的设计为例,通过软件FLUENT进行分析,对比不同散热结构的散热效果,并通过路试试验进行验证。  相似文献   

13.
锂离子电池因其优异的性能而广泛应用于储能系统以及新能源汽车的动力源。基于锂离子电池热物性特征以及运行条件选择合理的热管理模式,是确保锂离子电池安全性的重要手段。文中分别构建了基于风冷散热的圆柱形单体锂离子电池以及相应的电池模组模型,从最高温度、最大温差以及温度分布均匀性等方面探讨了热导率各向异性对电池冷却性能的影响。结果表明,锂离子电池内部的热量传递过程以径向导热热阻为主导,直接决定单体电池内部温差以及电池模组中不同单体电池之间的温度分布均匀性。从电池结构设计的角度而言,为了提高温度均匀性,在确保能量密度的前提下应尽量减小电池层状方向的尺寸。  相似文献   

14.
太阳能是平流层飞艇的理想能源,其热特性与飞艇浮力,蒙皮强度息息相关。准确预测飞艇的温度场是飞艇设计的重要步骤,但现有研究缺乏对太阳能电池的热特性分析。本文提出了一种包括太阳辐射,天空、地面长波辐射,蒙皮红外辐射和对流换热的飞艇模型,将几何模型离散化,编写C++程序计算了和分析了光伏电池的转化效率,吸收率、发射率、热阻和飞艇朝向对飞艇热性能、光伏阵列输出功率的影响。结果表明,较大的光伏阵列转化效率,发射率和等效热阻有利于改善飞艇“超冷”和“超热”现象的改善。光伏电池的辐射特性对光伏电池和氦气温度的影响最大:吸收率从0.5增加到0.9,主氦气囊昼夜温差升高约11.2K,光伏电池最高温度升高约29.8K;发射率0.1增加到0.9,主氦气囊昼夜温差降低约15.3K,光伏电池最高温度降低约50.2K。本文计算结果为飞艇的热稳定性的优化提供参考。  相似文献   

15.
为了有效揭示风冷对飞机机载三元动力锂电池性能的影响,该文搭建了一种风速可调节的三元锂电池风冷测试平台,从热性能、电性能、材料性能3方面分析风冷对三元锂电池性能的影响。结果表明,风冷可有效降低池体温度,对电性能、材料性能均有较好的保护作用。施加风冷后,池体表面温度随风速增加而逐渐下降,池体最高温度可控制在45℃内;从而有效缓解正极的形貌结构破坏,同时抑制正极的活性物质损失和活性锂损失;进一步使电阻增加得到有效抑制,在同样循环次数下容量衰减率显著低于无风冷情况,电池的循环寿命延长近一倍。研究结果对机载三元动力锂电池风冷系统建立具有指导意义。  相似文献   

16.
针对动力电池模组在高放电倍率下由于散热不足引发的热安全性问题,以某方形锂离子电池为研究对象,设计了铝热管-铝板嵌入式电池热管理散热结构. 建立4因素3水平的正交试验方案,采用极差法和层次法相结合的分析方法,研究自然对流条件下电池模组的散热性能,分析了3C倍率放电时热管冷凝段翅片数量、翅片位置、翅片间距以及翅片尺寸的多参数耦合对电池模组最高温度的影响. 结果表明,翅片各参数对电池模组最高温度的影响权重主次顺序依次为:翅片数量翅片尺寸翅片位置翅片间距,翅片最优参数组合为A3B2C3D3. 在自然对流环境下,适当减小翅片间距既可保证散热效率又有利于电池散热系统的紧凑性. 同时对比分析不同对流换热条件对散热的影响,当翅片对流换热系数为55 W·m-2·K-1、翅片间距为9 mm时,即使在3C倍率加速工况放电时,电池模组的最高温度为40.57 ℃,最大温差为3.89 ℃.  相似文献   

17.
动力电池合适的工作温度对电动汽车的安全、可靠运行至关重要,为了强化换热,提高电池组的散热性能,设计了热管-铝板嵌合式散热结构应用于锂离子电池模组,通过仿真分析对比了3种不同散热条件下电池模组的散热效果和均温性.结果表明,采用热管-铝板嵌合式散热结构比单一使用热管或铝板具有更好的散热效果和均温性.对电池间铝板厚度和热管数量对模组最高温度的影响进行了双因素方差分析,发现铝板厚度和热管数量的增加都能降低模组的最高温度,随着其进一步增加,影响效果逐渐降低;在自然对流条件下,铝板厚度对最高温度的影响更为明显,同时从性价比的角度出发,应优先考虑适当增加铝板厚度以优化电池组散热性能.  相似文献   

18.
针对动力电池组散热效果不佳的问题,以18650锂电池为研究对象,设计了一种直线形液冷管道的散热结构,利用COMSOL软件对所设计的散热结构进行温度场模拟,分析了冷却液雷诺数、冷却液初始温度、通道数量、冷却液流向对电池组散热性能的影响。可知,冷却液的初始温度与放电结束时电池组温度呈正相关;散热效果不会随着冷却液雷诺数的持续增加而提升,雷诺数增大至350时,最高温度稳定在302.3 K;通道数量和冷却液流向对散热性能有一定影响,Re=50时,三通道的电池组最高温度比一通道下降0.69 K,而温差下降了2.09 K。因此合理的优化冷却流道数量和冷却液流向会使散热更均匀。  相似文献   

19.
针对车用电池温升过高、电池组温差大的问题,开展电池包热流场分析与优化设计.根据Bernardi的生热速率方程式,建立由电池电解液、正负极柱和隔膜四部分组成的单体电池热耦合模型及成组电池传热模型;利用Fluent软件分析锂电池单体在自然对流环境下的温升特性,研究成组电池在强制对流条件下的热流场特性;通过增加导流板优化电池箱内流场结构,并评估导流板对电池组散热效率的作用.结果表明:单体锂电池在自然对流下温升明显,电池内核温度远高于正负极柱温度;电池箱进出风口位置及结构决定箱内空气的流向和成组电池的散热效果;通过对进、出风口位置的设计及增加导流板,可有效改进电池组热流场的均匀性,从而提高散热效果.  相似文献   

20.
针对锂离子电池单体成组后温度场的非均匀性导致的热不一致性问题,以及高温下电池单体间的热交互引发的热安全性问题,采用仿真与试验相结合的方式,基于锂离子电池生-传热机理,设计了电池单体单独成组、电池单体之间夹隔泡沫棉、电池模组底部布置液冷板3种递进式散热方案,并对液冷板进行了优化设计.采用有限元软件STAR-CCM+,仿真分析了3种方案下电池模组在不同放电倍率时的温度分布.结果表明:增加泡沫棉可减少电池间的热交互,进而提高电池单体间的热均衡性.在结合泡沫棉、导热板以及优化后(采用液冷管道串-并联组合方式)的液冷系统散热条件下,电池模组以2C倍率放电时最高温度为35.08℃,最大温差仅为4.85℃.研究结果可为电池热管理散热系统结构设计提供一定的理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号