首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为了改善车用锂电池模组在高温高倍率工况下的热均衡性,根据圆柱形锂电池的传热特性,建立了18650锂电池单体的三维热模型,并完成40 °C环境自然对流下的热特性仿真,并通过温升试验验证了生热模型的可靠性. 在此基础之上,针对某型纯电动汽车的动力电池组,提出了一种夹套式电池模组冷却系统,利用Fluent研究了40 °C环境下冷却液流量、冷却液温度和放电倍率对电池组散热均衡性的影响. 结果表明:增加冷却液流量可以有效降低电池组最高温度、最大温差及电池自身温差,改善电池间的温度均匀性;但当入口流量增至0.03 kg/s后,对电池组散热性能的改善效果十分有限;降低冷却液温度后,电池组最高温度下降,但电池组最大温差与单体电池间温差不断上升,单体电池自身最大温差略有降低;当放电倍率增大时,电池组最高温度与最大温差均不断上升,单体电池间温差以及电池自身温差显著增大,电池组热均衡性变差.   相似文献   

2.
针对纯电动汽车在放电过程中发热严重的问题,对不同放电倍率下电池的发热情况进行探究.建立一个准确的电池发热模型.首先进行不同温度下的内阻试验,采用密集的温度区间进行试验,探究不同温度对电池内阻的影响,验证了电池内阻随温度变化的规律,然后通过CATIA建立单体电池3维模型,导入到ICEM中划分网格,在网格质量达到标准的前提下,最后通过FLUENT软件对锂电池进行热流场的分析,分别模拟不同放电倍率下电池发热情况,并进行试验验证.结果表明:放电倍率对电池的温升影响很大,大放电倍率下的电池温升更快,温度更高.  相似文献   

3.
为确保电动汽车动力锂离子电池组的安全、高效运行,建立了动力电池组三维数学模型,分别研究了送风速度、固定件热导率、导热翅片数量及热导率对动力电池组温度特性和流动特性的影响规律。研究结果表明:相比未考虑电池正负极固定件而言,传统环氧树脂(热导率为0.2 W·m-1·K-1)作为电池正负极固定件显著提高了动力电池组内部的最高温度(约提高12K),且随着雷诺数增大,2种情况的压降差异逐渐变大,说明未考虑电池正负极固定件的数学模型明显低估了动力电池组内部的最高温度和流动压降;当冷却空气在错列布置的动力电池组内部处于层流流动时,动力电池组整体散热性能达到最优的电池正负极固定件热导率为2 W·m-1·K-1,这一最优热导率值具有实际工程意义;导热翅片能有效改善动力电池组内部的温度分布,且可使电池组内部的空气流动压降增幅小于10%。  相似文献   

4.
针对锂离子电池单体成组后温度场的非均匀性导致的热不一致性问题,以及高温下电池单体间的热交互引发的热安全性问题,采用仿真与试验相结合的方式,基于锂离子电池生-传热机理,设计了电池单体单独成组、电池单体之间夹隔泡沫棉、电池模组底部布置液冷板3种递进式散热方案,并对液冷板进行了优化设计.采用有限元软件STAR-CCM+,仿真分析了3种方案下电池模组在不同放电倍率时的温度分布.结果表明:增加泡沫棉可减少电池间的热交互,进而提高电池单体间的热均衡性.在结合泡沫棉、导热板以及优化后(采用液冷管道串-并联组合方式)的液冷系统散热条件下,电池模组以2C倍率放电时最高温度为35.08℃,最大温差仅为4.85℃.研究结果可为电池热管理散热系统结构设计提供一定的理论基础.  相似文献   

5.
针对电动汽车用动力锂离子电池的热安全性问题,以某11 Ah动力锂离子电池为例,进行有限元建模分析,分别对锂离子电池单体在不同充放电倍率、不同环境温度以及不同散热条件下的发热情况进行了分析.结果表明,锂电池放电倍率越高温升越高且温度分布越不均匀,良好的散热模式有助于电池温升的抑制和提高电池的热稳定性.定量化的计算仿真结果符合实际,研究结果为该类电池的建模与仿真提供了借鉴和参考,对锂电池单体的设计优化及锂电池热管理系统的研发具有指导意义.  相似文献   

6.
动力电池合适的工作温度对电动汽车的安全、可靠运行至关重要,为了强化换热,提高电池组的散热性能,设计了热管-铝板嵌合式散热结构应用于锂离子电池模组,通过仿真分析对比了3种不同散热条件下电池模组的散热效果和均温性.结果表明,采用热管-铝板嵌合式散热结构比单一使用热管或铝板具有更好的散热效果和均温性.对电池间铝板厚度和热管数量对模组最高温度的影响进行了双因素方差分析,发现铝板厚度和热管数量的增加都能降低模组的最高温度,随着其进一步增加,影响效果逐渐降低;在自然对流条件下,铝板厚度对最高温度的影响更为明显,同时从性价比的角度出发,应优先考虑适当增加铝板厚度以优化电池组散热性能.  相似文献   

7.
磷酸铁锂电池组成组过程的不一致性分析   总被引:1,自引:0,他引:1  
为研究磷酸铁锂电池在成组过程中遇到的不一致性的问题,并指导电池成组方式的选择,进行了相关试验和建模。用同一种磷酸铁锂电池,经过不同的工况,然后按不同的方式成组,来模拟实际电池组的不一致性。对Rint模型进行改进,在单体模型的基础上,构建了电池组串联、并联和混联模型。使用热模型验证并联模型下的电流分布。研究发现:由于单体间内阻不一致,并联单体之间,工作电流分布并不均匀,甚至可能造成安全问题。由此提出了"不一致性系数"的概念。通过计算各种混联方式的不一致性系数,建议采用能保证并联在一起的单体或模块内阻尽可能相似的连接方式。  相似文献   

8.
针对镍氢电池温度变化直接影响电池组的性能和寿命等问题,研究了镍氢蓄电池组充放电产生的温升和温度分布.分析了电池产热机理,以降低电池组的最高温升为目标,综合考虑了电池温升和充电电流等因素的较大初始充电电流,提出了分阶段恒流充电控制策略,并进行了数值仿真分析.通过电池组温度场模型理论分析,对现有电池组散热结构进行了优化,通...  相似文献   

9.
针对一种利用电动汽车空调制冷剂直接冷却电池组的锂离子电池热管理系统,设计了基于口琴管式冷板的电池模组.进行了直冷和液冷的比较,研究了环境温度、压缩机转速、阀门开度及放电倍率对制冷剂流量和蒸发温度的影响,以及对电池组散热特性的影响.结果表明:采用直冷方式在控制电池组平均温度上比液冷具有更好的冷却效果;压缩机转速增加对电池组有明显的控温效果,在3 500 r/min的转速下即使是2.0 C的高倍率放电也能控制温度在40.00℃以下;阀门开度增大有利于电池组平均温度的下降,但不利于电池组温差的降低;在电池组温差较大的情况下,单体电池温差能占到电池组温差的88%.  相似文献   

10.
为了提高烟叶烘烤试验箱内流热场分布的均匀性,采用计算流体力学(Computational fluid dynamics, CFD)方法模拟了试验箱内挂满烟叶情况下的气流场和温度场,结合正交试验法探究了箱内导流板结构和布置位置对气流均匀性和温度均匀性的影响。结果表明:考虑交互作用下导流板角度(A)、导流板高度比(B)和导流板距离差(C)三个因子对试验箱内总均匀性影响的主次顺序为A×B>B>A×C>C>A>B×C,交互作用明显。使箱内总均匀性效果最佳的导流板参数组合为A2B1C2。加装最佳组合导流板的温度不均匀度相比无导流板的温度不均匀度降低了62%,速度不均匀度相比无导流板的速度不均匀度降低了68%,改善效果明显。研究成果在改善烟叶烘烤试验箱烘烤质量,提高烟叶烘烤效率以及保证良好烟叶烘烤工艺数据库的建立上具有重要意义。  相似文献   

11.
针对现有风冷系统和串联回路水冷系统在降低电池组最高温度和减小单体电池间最大温差不足的问题, 提出了一种并联回路形式的水冷系统。 在分析锂离子电池生热机理的基础上, 建立电池的温度模型, 并在 AMESim(Advanced Modeling Environment for Performing Simulation)软件中搭建并联回路的电池组水冷系统, 同时 通过仿真实验与串联回路水冷系统进行散热性能对比。 其结果表明, 联回路形式的水冷系统散热效果更好, 在 维持电池组最高温度的基础上, 有效减小了单体电池间的温差, 并为进一步研究并联回路水冷系统的控制算法 打下基础。  相似文献   

12.
为提高装配式辐射供冷顶板的性能,建立了一种采用空气层进行热量交换的装配式辐射供冷顶板的数学模型,应用CFD(computational fluid dynamics)技术,数值模拟了耦合冷冻水管辐射顶板空气层的流场和温度场,分析了不同空气层厚度和不同供水温度对辐射顶板热特性的影响.数值模拟结果表明:空气层内由于温度差引起自然对流,辐射板内通过辐射,对流和导热的传热方式,使辐射板表面温度分布更均匀.在保证辐射板表面最低温度高于室内露点温度的条件下,随着空气层厚度和供水温度的增加,辐射板的表面平均温度升高,供冷能力下降.空气层厚度和供水温度的增加或减小会降低辐射板表面温度分布的均匀性.  相似文献   

13.
锂离子电池在大功率应用下的热控制和热管理已成为制约电动汽车商业化的瓶颈,为解决此问题,运用微热管阵列设计锂电池模块散热系统,在开放条件下对电池模块进行恒流18 A(1 C)和36 A(2 C)充放电测试,通过测量布置微热管阵列前后电池表面温度可知:在1C和2C充放电倍率下,散热系统能够有效的降低电池模块的温度及电池间温度差异,将温度和温度差值分别控制在40℃与5℃之内,可以解决温度对电池寿命和容量的影响问题.基于实验数据,对其中一2 C工况热量进行了计算,得到通过微热管阵列的对流散热量达到模块生热量的40%.  相似文献   

14.
对MH/Ni电池组(结构A)的充电热效应进行了分析,采用FLUENT软件模拟的方法,研究了两种新型MH/Ni电池组结构(结构B和C)热管理的通风冷却效果.根据计算,分析了流动回流因素对温度场的影响,并提出了结构改进建议.热管理系统C型在电池组充放电试验中的结果表明:8 A充电时电池组内温度升高小于5℃,温度差异小于4℃,系统冷却效果良好.  相似文献   

15.
Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal characteristics and heat generation mechanism are studied. Experiments of batteries in cases of different dimensions, batteries with different air cooling velocity and two capacity types of batteries in free convection environment are put forward. Battery heat generation performance, heat dissipation performance and comparison of different capacity types' batteries are researched and summarized. Conclusions of battery heat generation and dissipation in PEV applications, important battery thermal management factors and suggestions are put forward.  相似文献   

16.
作动器位移传感器常规工况热防护研究   总被引:1,自引:0,他引:1  
航空发动机矢量喷管作动器位移传感器在超温后工作失效。为实现位移传感器热防护要求,考虑了作动器内的导热和对流换热项,建立了作动器系统内各部分温度分布的数学模型。在常规工况允许的参数变化范围内,研究了作动器环境温度t_(wai)、入口工作介质温度tin和冷却衬套厚度Delta(δ)三个因素对位移传感器热防护的影响。结果表明:降低环境温度、降低作动器入口工作介质温度,减小冷却衬套厚度,均能有效降低位移传感器温度,建议通过合理设计作动器环境温度、入口工作介质温度和冷却衬套厚度实现位移传感器热防护。  相似文献   

17.
为提升动力锂电池包的散热性能和能量密度,基于半导体制冷方案,提出一种多目标优化设计方法,对动力锂电池包的排布间距和半导体制冷量进行优化设计。基于建立的半导体制冷方案的热分析模型,采用拉丁超立方试验及径向基函数(radial basis function, RBF)、响应面法(response surface methodology, RSM)、Kriging代理模型方法建立最高温度、最大温差及间距体积的近似模型。以最大温差和间距体积为目标,最高温度为约束建立电池包散热优化模型,运用多目标遗传算法(multi-objective genetic algorithm, MOGA)进行寻优求解,并通过实验验证优化方案仿真结果的可靠性。优化后仿真结果表明:电池模组间距体积减小了32.42%,最大温差降低了13.64%,最高温度降低了0.53%,该方法显著地提升了电池包的散热性能和能量密度。  相似文献   

18.
为了深入研究锂离子电池在工作状态下的热特性,通过试验与理论分析手段,结合红外成像技术与非接触式可视化观测方法,研究了锂离子电池单体在不同放电倍率下的表面温度分布特征及不同荷电状态(State of charge,SOC)下的温度均衡性和不同测量点的温升特性。结果表明:锂离子电池极耳附近区域为主要的产热源,且放电倍率越高,产热量越大;电池温度上升越快,最高温度越高,电池温度均衡性越差; 1C放电时,电池表面的温度梯度以多个类半圆形温区呈现;并以正极区为圆心向整个电池扩展; 2C放电时,初期形成的两个半圆形温区重合为一个以圆弧为下边的类矩形温区,直至扩展到电池下边缘;不同放电倍率下,电池温升速率均呈现先减小后增大的趋势。根据以上分析及研究成果,可以合理改进电池单体结构,设计电池组或电池包散热方案,提高锂离子电池在工作过程中的高效性和安全性。  相似文献   

19.
相变材料因其良好的控温能力在电池热管理中得到了广泛的研究,但在高温环境和高放电倍率下,单纯依靠相变材料很难满足热管理的要求。设计了相变材料和冷却板混合的电池热管理方式并对其进行数值模拟,与采用纯相变冷却进行了对比。分析了电池间距、冷却液入口速度对电池最高温度以及相变材料液化率的影响,并对充放电循环过程进行了探究。结果表明,在高温和高放电工况下,液冷的引入解决了因相变材料完全液化导致的电池温度恶化和中间电池热量累积的问题。相比于纯相变冷却,当冷却液速度为0.5 m/s时,混合冷却可将电池的间距减小至3 mm,继续增大冷却液的速度对热管理性能提升较小。同时,液冷板的加入可以减少首次充放电循环对后续循环过程的影响,增加电池的使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号