首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用厌氧氨氧化(ANAMMOX)工艺的厌氧上流式固定化微生物反应器处理含有机物的高浓度舍氮废水,考察ANAMMOX与反硝化协同脱氮效果。试验结果显示:在一定范围内,NH2-N和NO2-N进水负荷不会对ANAMMOX与反硝化协同脱氮造成明显影响,当进水负荷为301-800mg/L时,系统对NH4^+-N、NO2-N和TN的去除率分别达到93.3%、98.6%和90.3%的较高水平;当3COD浓度为800-850m学屯时,COD对ANAMMOX与反硝化协同脱氮基本不影响,并可实现95.7%的COD去除率。同时,NO3-N浓度、N2产量、pH值和生物相存在的特征性变化,也表明ANAMMOX与反硝化协同作用良好。  相似文献   

2.
张健 《海峡科学》2015,(3):39-41,57
厌氧氨氧化工艺是目前已知最简捷的脱氮工艺,该文考察了DO在UASB反应器中对Anammox反应器启动过程的影响。研究结果表明,以厌氧产甲烷颗粒污泥和好氧硝化污泥的混合物为接种污泥,经100 d未除氧运行,成功启动了UASB反应器,TN去除率高达80%以上,TN容积去除负荷稳定在0.24 kg N/(m3·d)。稳定阶段Δm(NH4+-N):Δm(NO2--N):Δm(NO3--N)三者比例为1:1.20:0.22。启动过程中,DO存在对启动过程反应器效能影响不大,但使Anammox反应首先出现在颗粒泥内部,且位于污泥层中部。  相似文献   

3.
介绍了一种用于净化养鱼水体的喷泉式生物膜反应器.首先在清洁的水中放养金鱼,考察水中氮素和COD浓度的增长规律.随后分别采用简单曝气和加入喷泉式生物膜反应器2种方法对水质进行净化,并比较他们的效果.结果表明:简单曝气可以降低NH4+-N浓度,但不能有效去除总氮(TN),而采用喷泉式生物膜反应器则可以有效地降低TN.通过TN去除动力学的分析,TN去除速率随着初始浓度的增加而增加,表现为Monod模型.其中C/N比对TN去除速率有明显影响,C/N比由5:1提高到15:1时,相应的TN去除速率(rmax)和饱和常数(Ks)分别提高了32%和降低了21%.  相似文献   

4.
应用两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)深度处理早期和晚期垃圾渗滤液.首先在一级UASB(UASB1)中实现反硝化,在二级UASB(UASB2)中通过产甲烷降解有机物,在A/O反应器的好氧区进行NH4+-N的硝化,最后在SBR中去除残余NH4+-N及通过反硝化去除NO2--N和NO3--N深度脱氮.试验结果表明:早期渗滤液ρ(COD),ρ(TN)和ρ(NH4+-N)分别为14.8,1.8和1.3 mg/mL,最终出水ρ(TN),ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)分别为28,4,3.4和1.9 mg/L,获得了大于98%的TN和NH4+-N去除率.晚期渗滤液ρ(COD)为2.5 mg/mL;ρ(TN),ρ(NH4+-N)分别为3.0和2.9 mg/mL时,获得99%以上的TN和NH4+-N去除率.最终出水ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)都小于10 mg/L,最终出水ρ(TN)为26~32 mg/L.  相似文献   

5.
在低基质质量浓度条件下,对海绵填料生物膜反应器和颗粒污泥反应器进行厌氧氨氧化的脱氮性能进行对比研究。研究结果表明:当进水NH4+-N和NO2--N质量浓度分别为(17.03±2.16)mg/L和(19.17±2.33)mg/L时,颗粒污泥厌氧氨氧化反应器的脱氮性能明显优于海绵填料生物膜反应器的脱氮性能;保持对NH4+-N和NO2--N的平均去除率为90%以上时,通过缩短水力停留时间,颗粒污泥反应器容积氮去除速率可达3.55 kg.N/(m3·d),而海绵填料生物膜反应器仅为0.94 kg·N/(m3·d);进水中NO2--N与NH4+-N的质量浓度比能影响反应器的化学计量关系。  相似文献   

6.
采用厌氧折流板反应器-垂直潜流人工湿地(ABR-SSFW)组合工艺处理农村生活污水.实际运行结果表明:当水力停留时间(HRT)大于12 h时.组合工艺对COD,TN,NH3 -N,TP的平均去除率分别为85.5%,42.8%,34.67%,41.97 %6;当HRT小于12 h时,组合工艺对COD,TN,NH3-N,TP各项的去除率都有明显下降.在对COD的去除中ABR发挥的作用较大,占到了60%以上;在对NH3-N,TN,TP的去除中,SSFW作用较大.  相似文献   

7.
好氧颗粒污泥膜生物反应器处理畜禽废水   总被引:2,自引:0,他引:2  
采用好氧颗粒污泥膜生物反应器处理畜禽废水,分别对COD、NH4 -N、NO2--N、NO3--N的去除效果和对膜通量的影响进行了研究。结果表明:在水力停留时间(HRT)为8h,进水COD浓度为600mg/L,NH4 -N浓度为40mg/L的条件下,出水COD、NH4 -N的浓度分别为46.6和4.8mg/L。NO2--N和NO3--N的去除率也可达90%以上。并且好氧颗粒污泥的加入减缓了膜的污染。  相似文献   

8.
增强的A+A2/O工艺是城镇污水厂普遍采用的脱氮除磷工艺。为研究预缺氧池对增强的A+A2/O工艺的脱氮除磷的作用效果,分别对稳定运行中A+A2/O工艺中预缺氧池进、出水中的氮、磷含量进行分析。预缺氧池对TN、NH4+-N的去除率分别达到62.63%和37.05%,分别占整个A+A2/O工艺系统去除率的90.52%和37.95%。通过对预缺氧池氮元素进行物料平衡计算,预缺氧池中TN的减少量9.27mg/L近似等于NH4+-N和NO3--N去除总量9.07mg/L。实验结果表明,前置预缺氧池发生了厌氧氨氧化作用,能够强化系统脱氮。此外,系统中总TP去除率达92.66%,表明前置预缺氧池能促进厌氧池的厌氧释磷,提高去除率。  相似文献   

9.
菹草-伊乐藻群落对富营养化水体水质的净化效果   总被引:2,自引:0,他引:2  
在富营养化湖泊内的围隔中,引种菹草、伊乐藻,分别构建菹草-伊乐藻群落(围区A)与单-菹草群落(围区B),跟踪观测水草恢复生长情况,调查两类群落对水体水质的净化作用,结果发现:菹草-伊乐藻群落不仅能在春季保持对水体营养盐较高的去除效果,并能在春末初夏时有效缓解菹草死亡给水质带来的不利影响;在菹草旺盛生长期(阶段I),与对照区(无水生高等植物)相比,菹草-伊乐藻群落对TN、NH4^+-N、TP、Chla的去除率达50.7%、83,2%、32.0%、38.3%,单一菹草群落对TN、NH4^+-N、TP、Chla的去除率也达到47.3%、72.5%、32.4%、45.2%;而在菹草开始衰亡后这一时期(阶段Ⅱ)菹草-伊乐藻群落对TN、NH4^+-N、TP的去除率分别为47.1%、69.4%、11.2%,而围区B内TN、NH4^+-N浓度则与对照区相比差异不显著(P〉0.05,N=9),TP浓度甚至上升了24.3%,  相似文献   

10.
采用好氧颗粒污泥膜生物反应器处理畜禽废水,分别对COD、NH4^+-N、NO2^--N、NO3^--N的去除效果和对膜通量的影响进行了研究。结果表明:在水力停留时间(HRT)为8h,进水COD浓度为600mg/L,NH4^+-N浓度为40mg/L的条件下,出水COD、NH4^+-N的浓度分别为46.6和4.8mg/L。NO2^--N和NO3^--N的去除率也可达90%以上。并且好氧颗粒污泥的加入减缓了膜的污染。  相似文献   

11.
为进一步降低猪场示范工程排放废水中COD和氨氮的浓度,本试验尝试以葡萄糖配水模拟猪场废水,在同一个UASB反应器内实现同步的厌氧氨氧化、甲烷化和反硝化反应,以达到同时除碳脱氮的目的。结果表明,接种不同活性污泥于同一个UASB反应器内,经过约48 d反应器启动成功。在完成启动的反应器中添加亚硝酸盐氮和氨氮,使pH维持在7.3~8.3,温度、进水流量、回流量和水力停留时间等均与启动阶段保持一致,可逐步实现同步厌氧氨氧化和甲烷化反硝化。此阶段进水CODCr为500 mg/L,CODCr去除率在80%~90%之间,NO2-N去除率接近100%,氨氮去除率较低且处在波动状态。但是适当降低进水中有机物浓度,可在同时存在亚硝酸盐氮和氨氮的情况下提高厌氧氨氧化菌的竞争能力。当仅降低进水CODCr浓度(由500mg/L降至100 mg/L)时,氨氮去除率能缓慢升至30%以上。  相似文献   

12.
通过野外模拟试验,研究氮沉降增加以及短期氮沉降恢复对杉木人工林土壤物理性质、pH值、NH4+-N、NO3--N、交换性钙、镁的影响。试验设计为5种处理,分别为N0(0kg·hm-2·a-1)、N1(60kg·hm-2·a-1)、N2(120kg·hm-2·a-1)、N3(240kg·hm-2·a-1)、Nr(氮沉降恢复),每个处理重复3次。以尿素[CO(NH2)2]作为氮源,每月以溶液方式对林地进行喷施。通过3年的处理后发现,氮沉降使土壤容重降低;0-20cm土层pH值出现短期的突增,而20-60cm则随氮沉降量的增大其酸化程度也越大;0-40cm土层中土壤NH4+-N含量从高到低的顺序比较为:N3>N2>N0>N1;40-60cm土层为:N3>N2>N1>N0,;土层中NO3--N含量从高到低的顺序为:N3>N2>N0>N1。氮沉降促进了土壤交换性钙和镁的增加。短期的氮沉降恢复过程中,土壤NH4+-N和NO3—N出现了显著的恢复特征;而土壤容重、pH值、交换性钙、镁也出现了一些恢复现象,但其特征并不显著。  相似文献   

13.
前置反硝化生物滤池具有良好的脱氮性能,回流比是影响其脱氮性能的重要影响因素.调节回流比参数,考察回流比分别为100%、200%、300%时的工艺参数条件下,前置反硝化生物滤池对COD、NH3—N、NO3-—N、TN的去除效果.试验表明回流比对反应器中COD、NH3—N、NO3-—N、TN均有一定的影响,对TN的去除影响最大.在一定的范围内(100%~200%),增加回流比有助于提高系统对污染物的去除,但当回流比过大时(300%),系统出水水质下降.确定最佳回流比为200%,该工况下系统出水COD、NH3—N、TN平均质量浓度分别为28.45、2.27、12.45 mg/L.  相似文献   

14.
全水清  吴银枝 《江西科学》2008,26(5):794-796
采用Na2HPO4·12H2O和MgSO4·7H2O使NH3-N生成磷酸铵镁的化学沉淀法,考察了药剂投加顺序、pH值、药剂配比对高浓度氨氮废水处理效果的影响。结果表明:药剂投加顺序对处理效果没有明显影响;在pH值为9,反应时间为20min,n(NH^+4 +):n(Mg^2+):n(PO^3-4)=1:1.02:1时,氨氮去除率可迭99.28%,为后续处理创造了条件。  相似文献   

15.
为探讨饮用水生物滤池对NH4+-N去除和"氮亏损"现象的影响因素,测定生物滤池进出水中NH4+-N,NO2--N,NO3--N等指标.结果表明,陶粒生物滤池对NH4+-N的去除率从14.97%到60.99%,活性炭生物滤池对NH4+-N的去除率从16.59%到83.02%;陶粒和活性炭滤池对NH4+-N的去除率都随着流速的增加而降低;陶粒滤池内NH4+-N的去除率随着气水比和C∶N的增加而先增加后下降;NH4+-N的去除率在活性炭滤池内随C∶N的增加而降低,气∶水的增加而增加;气∶水对两种生物滤池中NH4+-N去除的影响最大.陶粒生物滤池氮亏损的量从0.10 mg/L到0.70 mg/L,活性炭生物滤池氮亏损量从0.11 mg/L到1.01 mg/L;氮亏损量随着流速增加而降低,随着气水比增加而增加,随着C∶N的增加而先下降后增加;气水比对陶粒和活性炭生物滤池的氮亏损量影响最大.  相似文献   

16.
SBBR处理猪场厌氧消化液脱氮除磷实验研究   总被引:1,自引:0,他引:1  
猪场废水是富含氮和磷的高浓度有机废水,其厌氧消化液C/N比低,可生化性差,本实验采用序批式生物膜反应器(SBBR)处理猪场废水厌氧消化液,结果表明:SBBR直接处理猪场废水厌氧消化液,COD和NH4+-N去除不稳定且效果较差,但通过添加30%猪场原水能有效提高SBBR对厌氧消化液污染物的降解能力,COD去除率可提高到83.7%~87.95%,氨氮去除率提高到96.1%~98.9%,TP去除效果要比未添加的好,去除率增大到81.21%~82.97%。  相似文献   

17.
厌氧氨氧化、反硝化与甲烷化耦合研究   总被引:3,自引:0,他引:3  
根据厌氧氨氧化菌、反硝化菌与甲烷菌的特征,采用气提式反应器,利用反硝化颗粒污泥进行厌氧氨氧化污泥培养,研究厌氧氨氧化、反硝化与甲烷化耦合作用,并考察其对高氨氮有机废水的处理效果.反应器经过106 d的试验运行表明,NH3-N、TN、NO3-N及COD的去除率分别可达45%、69%、94%及81%;试验过程中同时观察到了厌氧脱磷现象;反应器中接种的灰黑色絮状污泥在连续运行期间逐渐转变为深棕黄色颗粒污泥.经PCR检测表明厌氧氨氧化活性较高.  相似文献   

18.
两级水解酸化-FCR系统处理印染废水   总被引:2,自引:0,他引:2  
采用两级水解酸化-FCR系统处理印染废水,考察了不同水力停留时间(HRT)对COD、色度、NH3-N和苯胺等去除效果的影响,并对最佳水力停留时间时脱氮效果进行了研究.结果表明:当HRT为30h时,系统COD、色度、TN、NH3-N和苯胺的平均去除率分别为93.3%、81.9%、79.9%、98.1%和74.8%,出水满足《GB 4287—92纺织染整工业水污染物排放标准》的一级标准.该系统具有较高的去污脱色效果,脱氮效果尤其显著,可应用于中、高浓度印染废水的处理.  相似文献   

19.
讨论了复合生物反应器(HBR)对城市污水中臭味以及CODcr、NH3-N和TP等的去除性能。结果表明,在水力停留时间3.5h,进水臭阈值平均为50.6时,臭味平均去除率为75.9%,出水臭阈值达到恶臭污染物排放二级标准(GB14554—93)。HBR工艺对CODcr、NH3-N、TP等亦具有良好的去除和抗冲击负荷性能。污水臭味去除专性茵主要为好氧革兰氏阳性芽孢杆菌属。  相似文献   

20.
提出无污泥持留序批式反应器并建立其动力学理论模型.模型推导表明:反应器的脱氮效能是水力停留时间、曝气比率、进水周期等操作因子的函数;通过调控水力停留时间、曝气比率等因素,能调节反应器的好氧菌筛选因子和厌氧菌筛选因子,完成硝酸菌的洗出和反硝化菌的积累.模型极限分析表明现有Sharon反应器的实质是反应周期为零的无污泥持留序批式反应器.以荷兰Dokhaven污水处理厂的Sharon反应器为例,模型计算结果表明在水力停留时间为2.6d、反应周期为2h、曝气比率为0.175时,厌氧菌筛选因子值为0.020,低于反硝化菌的最大比生长速率0.034,好氧菌筛选因子值为0.093,介于亚硝酸菌最大比生长速率0.137与硝酸菌最大比生长速率0.082之间,此时反应器的理论氨转化率为98.9%,总氮脱除率为97.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号