首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motoyama EM  Yu G  Vishik IM  Vajk OP  Mang PK  Greven M 《Nature》2007,445(7124):186-189
High-transition-temperature (high-T(c)) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essential to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping and appears to overlap with the superconducting phase. The archetypal electron-doped compound Nd2-xCexCuO4+/-delta (NCCO) shows bulk superconductivity above x approximately 0.13 (refs 3, 4), while evidence for antiferromagnetic order has been found up to x approximately 0.17 (refs 2, 5, 6). Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies, arises from a build-up of spin correlations, in agreement with recent theoretical proposals.  相似文献   

2.
3.
提出了一种可能的超导理论,该理论强调了格点上的强关联 自旋磁综合利用知雪导机制中的重要性。推出了铜氧化合物超导体的临界温度公式。结果表明,临界瀑 仅强烈地依赖于自旋磁相互作用和格点 的强关联相互作用,而且也依赖于掺杂浓度。  相似文献   

4.
5.
Liquids are expected to crystallize at low temperature. The only exception is helium, which can remain liquid at 0 K, owing to quantum fluctuations. Similarly, the atomic magnetic moments (spins) in a magnet are expected to order at a temperature scale set by the Curie-Weiss temperature theta(CW) (ref. 3). Geometrically frustrated magnets represent an exception. In these systems, the pairwise spin interactions cannot be simultaneously minimized because of the lattice symmetry. This can stabilize a liquid-like state of short-range-ordered fluctuating moments well below theta(CW) (refs 5-7). Here we use neutron scattering to observe the spin liquid state in a geometrically frustrated system, Tb(2)Ti(2)O(7), under conditions of high pressure (approximately 9 GPa) and low temperature (approximately 1 K). This compound is a three-dimensional magnet with theta(CW) = -19 K, where the negative value indicates antiferromagnetic interactions. At ambient pressure Tb(2)Ti(2)O(7) remains in a spin liquid state down to at least 70 mK (ref. 8). But we find that, under high pressure, the spins start to order or 'crystallize' below 2.1 K, with antiferromagnetic order coexisting with liquid-like fluctuations. These results indicate that a spin liquid/solid mixture can be induced by pressure in geometrically frustrated systems.  相似文献   

6.
采用基于密度泛函理论的第一性原理计算多铁材料BiNi_xFe_(1-x)O_3(x=0,0.125,0.167,0.25,0.5)各晶体结构的电子性质.能带结构、Mulliken电荷以及自旋磁矩等计算结果表明:由Ni离子部分替代掺杂Fe离子可使体系由反铁磁有序转变为局部亚铁磁有序,晶体总自旋磁矩随Ni离子浓度的增大而增大;Ni离子掺杂明显抑制了特定位置Fe离子的磁矩,这是由于Ni-eg轨道少数自旋方向的电子态被50%占据以及Ni离子与Fe离子之间的超交换作用所致.  相似文献   

7.
具有磁电效应的A类反铁磁系统的自旋波理论   总被引:1,自引:0,他引:1  
自旋波理论通常用来研究低温下各类铁磁、反铁磁的磁性质 .运用自旋波理论 ,考虑外电场作用下产生的磁电效应 ,研究了A类反铁磁系统在主要高对称性方向的自旋波频谱以及由于磁电效应而发生的改变 .发现磁电效应电场的作用相当于一个虚构的磁场 ,能够引起自旋波能谱的分裂  相似文献   

8.
Yang YF  Fisk Z  Lee HO  Thompson JD  Pines D 《Nature》2008,454(7204):611-613
The origin of magnetic order in metals has two extremes: an instability in a liquid of local magnetic moments interacting through conduction electrons, and a spin-density wave instability in a Fermi liquid of itinerant electrons. This dichotomy between 'local-moment' magnetism and 'itinerant-electron' magnetism is reminiscent of the valence bond/molecular orbital dichotomy present in studies of chemical bonding. The class of heavy-electron intermetallic compounds of cerium, ytterbium and various 5f elements bridges the extremes, with itinerant-electron magnetic characteristics at low temperatures that grow out of a high-temperature local-moment state. Describing this transition quantitatively has proved difficult, and one of the main unsolved problems is finding what determines the temperature scale for the evolution of this behaviour. Here we present a simple, semi-quantitative solution to this problem that provides a basic framework for interpreting the physics of heavy-electron materials and offers the prospect of a quantitative determination of the physical origin of their magnetic ordering and superconductivity. It also reveals the difference between the temperature scales that distinguish the conduction electrons' response to a single magnetic impurity and their response to a lattice of local moments, and provides an updated version of the well-known Doniach diagram.  相似文献   

9.
Ferromagnetic or antiferromagnetic spin ordering is governed by the exchange interaction, the strongest force in magnetism. Understanding spin dynamics in magnetic materials is an issue of crucial importance for progress in information processing and recording technology. Usually the dynamics are studied by observing the collective response of exchange-coupled spins, that is, spin resonances, after an external perturbation by a pulse of magnetic field, current or light. The periods of the corresponding resonances range from one nanosecond for ferromagnets down to one picosecond for antiferromagnets. However, virtually nothing is known about the behaviour of spins in a magnetic material after being excited on a timescale faster than that corresponding to the exchange interaction (10-100?fs), that is, in a non-adiabatic way. Here we use the element-specific technique X-ray magnetic circular dichroism to study spin reversal in GdFeCo that is optically excited on a timescale pertinent to the characteristic time of the exchange interaction between Gd and Fe spins. We unexpectedly find that the ultrafast spin reversal in this material, where spins are coupled antiferromagnetically, occurs by way of a transient ferromagnetic-like state. Following the optical excitation, the net magnetizations of the Gd and Fe sublattices rapidly collapse, switch their direction and rebuild their net magnetic moments at substantially different timescales; the net magnetic moment of the Gd sublattice is found to reverse within 1.5 picoseconds, which is substantially slower than the Fe reversal time of 300 femtoseconds. Consequently, a transient state characterized by a temporary parallel alignment of the net Gd and Fe moments emerges, despite their ground-state antiferromagnetic coupling. These surprising observations, supported by atomistic simulations, provide a concept for the possibility of manipulating magnetic order on the timescale of the exchange interaction.  相似文献   

10.
Kummamuru RK  Soh YA 《Nature》2008,452(7189):859-863
The role of magnetic domains (and the walls between domains) in determining the electrical properties of ferromagnetic materials has been investigated in great detail for many years, not least because control over domains offers a means of manipulating electron spin to control charge transport in 'spintronic' devices. In contrast, much less attention has been paid to the effects of domains and domain walls on the electrical properties of antiferromagnets: antiferromagnetic domains show no net external magnetic moment, and so are difficult to manipulate or probe. Here we describe electrical measurements on chromium--a simple metal and quintessential spin density wave antiferromagnet--that show behaviour directly related to spin density wave formation and the presence of antiferromagnetic domains. Two types of thermal hysteresis are seen in both longitudinal and Hall resistivity: the first can be explained by the quantization of spin density waves due to the finite film thickness (confirmed by X-ray diffraction measurements) and the second by domain-wall scattering of electrons. We also observe the striking influence of the electrical lead configuration (a mesoscopic effect) on the resistivity of macroscopic samples in the spin density wave state. Our results are potentially of practical importance, in that they reveal tunable electrical effects of film thickness and domain walls that are as large as the highest seen for ferromagnets.  相似文献   

11.
应用Peierls-Hubbard模型研究了一种结构类似于poly-BIPO的准一维有机铁磁体。采用Hartree-Fock近似和周期性边界条件,探讨了最近邻相互作用和次近邻相互作用对系统的铁磁基态的影响。由于最近邻与次近邻相互作用之间的竞争,导致主链上相邻格点的自旋发生反铁磁耦合→铁磁耦合的变化,形成反铁磁自旋波或铁磁自旋波作为传递媒介,使自由基自旋得以平行排列,得到高自旋的铁磁基态。  相似文献   

12.
Systematic studies of the transport properties of La0.67Ca0.33Mn1-xFexO3 (x=0-0.3) systems showed that with increasing Fe-doping content x the resistance increases and the insulator-metal transition temperature moves to lower temperature. For small doping content, the transport property satisfies metal transport behavior below the transition temperature, and above the transition temperature it satisfies the small polaron model. This behavior can be explained by Fe^3 doping, which easily forms Fe^3 -O^2- -Mn^4 channel, suppressing the double exchange Mn^3 -O^2- -Mn^4 channel and enhancing the spin scattering of Mn ions induced by antiferromagnetic clusters of Fe ions.  相似文献   

13.
Simon J  Bakr WS  Ma R  Tai ME  Preiss PM  Greiner M 《Nature》2011,472(7343):307-312
Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications for systems ranging from high-temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers, owing to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we use a degenerate Bose gas of rubidium atoms confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary a magnetic field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase, the interaction between the spins is overwhelmed by the applied field, which aligns the spins. In the antiferromagnetic phase, the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, thereby improving our understanding of real magnetic materials.  相似文献   

14.
Roch N  Florens S  Bouchiat V  Wernsdorfer W  Balestro F 《Nature》2008,453(7195):633-637
Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, is believed to govern many of the fascinating properties of strongly correlated systems such as heavy-fermion compounds or high-temperature superconductors. In contrast to bulk materials with very complex electronic structures, artificial nanoscale devices could offer a new and simpler means of understanding quantum phase transitions. Here we demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two different types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot is operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes. This strong electronic coupling between the quantum dot and the metallic contacts provides the strong electron correlations necessary to observe quantum critical behaviour. The quantum magnetic phase transition between two different Kondo regimes is achieved by tuning gate voltages and is fundamentally different from previously observed Kondo transitions in semiconductor and nanotube quantum dots. Our work may offer new directions in terms of control and tunability for molecular spintronics.  相似文献   

15.
16.
利用求严格解和坐标空间重正化群两种方法,研究了只考虑近邻相互作用的一维反铁磁高斯模型,发现一维反铁磁高斯系统同一维铁磁高斯系统一样,也存在有限大小温度的相变,利用傅里叶变换的方法计算出了严格的配分函数,进而求出了系统的自由能,由自由能函数的奇异点,得到了系统的临界温度.应用坐标空间重正化群和自旋重标相结合的方法求出了系统的临界温度,得到了与严格计算相同的结果.  相似文献   

17.
Yamaguchi A  Kobayashi S  Ishimoto H  Kojima H 《Nature》2006,444(7121):909-912
The magnetic properties of (3)He in its various phases originate from the interactions among the nuclear spins. The spin-polarized 'ferromagnetic' superfluid (3)He A(1) phase (which forms below 3 mK between two transition temperatures, T(c1) and T(c2), in an external magnetic field) serves as a material in which theories of fundamental magnetic processes and macroscopic quantum spin phenomena may be tested. Conventionally, the superfluid component of the A(1) phase is understood to contain only the majority spin condensate, having energetically favoured paired spins directed along the external field and no minority spin condensate having paired spins in the opposite direction. Because of difficulties in satisfying both the ultralow temperature and high magnetic field required to produce a substantial phase space, there exist few studies of spin dynamics phenomena that could be used to test the conventional view of the A(1) phase. Here we develop a mechanical spin density detector that operates in the required regime, enabling us to perform measurements of spin relaxation in the A(1) phase as a function of temperature, pressure and magnetic field. Our mechanical spin detector is based in principle on the magnetic fountain effect; spin-polarized superfluid motion can be induced both magnetically and mechanically, and we demonstrate the feasibility of increasing spin polarization by a mechanical spin filtering process. In the high temperature range of the A(1) phase near T(c1), the measured spin relaxation time is long, as expected. Unexpectedly, the spin relaxation rate increases rapidly as the temperature is decreased towards T(c2). Our measurements, together with Leggett-Takagi theory, demonstrate that a minute presence of minority spin pairs is responsible for this unexpected spin relaxation behaviour. Thus, the long-held conventional view that the A(1) phase contains only the majority spin condensate is inadequate.  相似文献   

18.
A quantum spin-liquid phase is an intriguing possibility for a system of strongly interacting magnetic units in which the usual magnetically ordered ground state is avoided owing to strong quantum fluctuations. It was first predicted theoretically for a triangular-lattice model with antiferromagnetically coupled S = 1/2 spins. Recently, materials have become available showing persuasive experimental evidence for such a state. Although many studies show that the ideal triangular lattice of S = 1/2 Heisenberg spins actually orders magnetically into a three-sublattice, non-collinear 120° arrangement, quantum fluctuations significantly reduce the size of the ordered moment. This residual ordering can be completely suppressed when higher-order ring-exchange magnetic interactions are significant, as found in nearly metallic Mott insulators. The layered molecular system κ-(BEDT-TTF)(2)Cu(2)(CN)(3) is a Mott insulator with an almost isotropic, triangular magnetic lattice of spin-1/2 BEDT-TTF dimers that provides a prime example of a spin liquid formed in this way. Despite a high-temperature exchange coupling, J, of 250 K (ref. 6), no obvious signature of conventional magnetic ordering is seen down to 20 mK (refs 7, 8). Here we show, using muon spin rotation, that applying a small magnetic field to this system produces a quantum phase transition between the spin-liquid phase and an antiferromagnetic phase with a strongly suppressed moment. This can be described as Bose-Einstein condensation of spin excitations with an extremely small spin gap. At higher fields, a second transition is found that suggests a threshold for deconfinement of the spin excitations. Our studies reveal the low-temperature magnetic phase diagram and enable us to measure characteristic critical properties. We compare our results closely with current theoretical models, and this gives some further insight into the nature of the spin-liquid phase.  相似文献   

19.
Bose-Einstein condensation denotes the formation of a collective quantum ground state of identical particles with integer spin or intrinsic angular momentum. In magnetic insulators, the magnetic properties are due to the unpaired shell electrons that have half-integer spin. However, in some such compounds (KCuCl3 and TlCuCl3), two Cu2+ ions are antiferromagnetically coupled to form a dimer in a crystalline network: the dimer ground state is a spin singlet (total spin zero), separated by an energy gap from the excited triplet state (total spin one). In these dimer compounds, Bose-Einstein condensation becomes theoretically possible. At a critical external magnetic field, the energy of one of the Zeeman split triplet components (a type of boson) intersects the ground-state singlet, resulting in long-range magnetic order; this transition represents a quantum critical point at which Bose-Einstein condensation occurs. Here we report an experimental investigation of the excitation spectrum in such a field-induced magnetically ordered state, using inelastic neutron scattering measurements of TlCuCl3 single crystals. We verify unambiguously the theoretically predicted gapless Goldstone mode characteristic of the Bose-Einstein condensation of the triplet states.  相似文献   

20.
应用线性自旋波的理论导出铁磁-反铁磁双层系统的Heisenberg模型哈密顿量,采用矩阵格林函数运动方程技术得到自旋波的色散关系,利用数值计算的方法得到铁磁-反铁磁双层的低温内能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号