首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
为了简化已有的高超声速飞行器纵向通道反步法控制,提出了一种基于预测模型的模糊控制器.针对高度子系统,通过对原模型进行转换得到四步预测模型.控制器设计仅需一个模糊系统对不确定部分进行估计补偿,可避免虚拟控制量的不断求取.稳定性分析证明了系统跟踪误差是一致终值有界的.与反步法相比,该策略大大简化控制器的设计复杂度.仿真验证了算法的有效性.  相似文献   

2.
针对含有动态摩擦的可重构机械臂轨迹跟踪执行器部分失效故障的问题,提出一种基于有效因子融合的分散反演滑模容错控制方法。将可重构机械臂的每个关节模块考虑成一个子系统,将有效因子融合到子系统动力学模型中。基于Lyapunov稳定性理论,子系统误差状态空间分别采用了反演思想和终端滑模进行控制器设计,并利用径向基函数(RBF)神经网络估计系统模型的不确定项和交联项,自适应地补偿了神经网络的估计误差。最后,数值仿真结果表明了提出的分散容错方法的有效性。  相似文献   

3.
针对一类多输入极值搜索系统的预设性能控制问题,首先,利用目标函数设计出状态量极值参考轨迹;然后,利用性能函数和误差转换函数构建等效模型,分别针对单输入系统进行预设性能控制器设计;最后,从反演控制的角度逐步选取适当的李雅普诺夫函数设计不确定参数自适应估计律.该方法结构简单,容易实现,使系统在满足预设性能的前提下完成了极值搜索过程,数学仿真验证了方法的可行性.  相似文献   

4.
针对存在执行器输入饱和约束、模型参数不确定性以及外部扰动等因素影响下的移动机器人跟踪控制问题,提出一种考虑执行器饱和补偿的移动机器人自适应积分滑模控制方法。利用双曲正切函数对执行器输入饱和约束作近似处理,并将系统动力学模型表示为仿射系统形式。将执行器输入饱和约束的近似处理误差、模型参数不确定性以及系统外部扰动扩张为一个新的状态,进而设计扩张状态观测器对系统总和扰动进行估计,在此基础上设计系统自适应积分滑模控制器,从而改善普通滑模控制中抖振突出的问题,保证系统的跟踪控制性能。对所提控制方法进行了仿真验证,结果表明,所提控制方法在执行器输入饱和约束、模型参数不确定性以及外部扰动等因素影响下能够保证跟踪误差快速稳定收敛。  相似文献   

5.
针对高超声速飞行器非仿射模型提出预设性能控制方法,设计了一种新型预设性能函数来保证控制器的动态性能和稳态性能,通过构造误差转化函数将最初的受限系统转化为等效的不受限系统来简化控制器设计.将高超声速飞行器纵向动力学模型分解为速度和高度子系统并分别设计控制律.对于高度子系统,使用高阶跟踪微分器对误差进行估计,引入模糊函数对未知项进行逼近,避免了反演控制中的反复求导;对于速度子系统,直接根据预设性能函数设计比例积分控制器.所设计的控制律在参数不确定和干扰的情况下保证了期望的动态性能和稳态精度,同时降低了计算量.最后,通过仿真实验验证了控制器的有效性.   相似文献   

6.
对一类严格反馈非线性系统的预设性能反演控制问题进行了研究.提出了一种新的误差转化方法,将原始的不等式约束的受限系统转化为等式的非受限系统,并放宽了对初始误差已知的限制,系统的控制增益为未知常数且初始跟踪误差未知.利用自适应估计器实现了对未知控制增益的逼近,并将虚拟控制量的跟踪问题转化为误差状态量的有界性问题,完成了反演控制器的设计.仿真结果表明:所设计的控制器能够满足预设性能的要求,且保证闭环系统所有的状态量有界,进而证明了控制器设计方法的有效性.  相似文献   

7.
针对存在模型参数非线性不确定性因素和输入饱和约束的永磁同步电机伺服系统控制问题,提出一种具有抗输入饱和约束的鲁棒有限时间控制方法。为了处理输入饱和约束问题,通过定义饱和非线性函数将系统模型转化为带输入饱和约束的状态空间方程形式;将模型参数非线性不确定性因素扩张为一个新的状态变量,进而通过设计干扰观测器实现对不确定性因素的在线估计和前馈补偿,以提高系统的鲁棒性能;在模型参数不确定性因素前馈补偿的基础上设计永磁同步电机伺服系统鲁棒有限时间控制器,保证系统跟踪误差的有限时间收敛。仿真对比结果验证了所设计控制方法的有效性。  相似文献   

8.
针对现有离散时间预设性能控制方法对滑模趋近律依赖度高、抖振缺陷明显的难题,通过创建一种摆脱了滑模控制的设计新框架,为拦截弹导引头稳定平台提出了一种离散时间预设性能控制新方法。首先,设计一种离散时间性能函数对跟踪误差的收敛轨迹进行包络约束;然后,定义一种离散时间转换误差并将其用于构造一种新颖的反馈函数;设计离散时间控制律对新开发的反馈函数而不是转换误差进行镇定,不仅保证了所有跟踪误差均具有期望的预设性能,还摆脱了控制算法对滑模趋近律的依赖性,从根本上解决了控制抖振难题;最后,通过数值对比仿真验证了所提方法的有效性与优势。  相似文献   

9.
针对非线性系统面临的不确定动态、未知外部扰动和输入受限问题,提出了一种考虑输入饱和的零误差跟踪控制器。首先将系统的未建模动态和外部扰动综合为有界的“总扰动项”,进而设计控制律和自适应律补偿这一扰动项,使跟踪误差渐进收敛至零而不仅仅收敛至有界的紧集内。相比于传统的考虑不确定动态和外部扰动的非线性控制方法,所提控制方法的控制器结构更加简单,跟踪精度更高。此外,通过设计辅助误差补偿系统,使得控制器能较好地应对输入饱和情形,在饱和情形消失后,补偿信号能够渐进收敛至零。最后,通过仿真验证了所提方法的有效性。  相似文献   

10.
针对一类带有未知外部扰动及控制方向的不确定非线性系统设计自适应模糊滑模控制器,利用Nussbaum函数估计系统未知的控制方向.模糊系统的输入为跟踪误差而不是系统状态向量,这样能提升控制器对误差变化的灵敏度.基于Lyapunov稳定性理论设计系统可调参数的自适应规则,该控制器能保证闭环系统稳定性并且跟踪误差及其各阶导数渐近趋于原点.数值仿真的结果也验证了该方法的有效性.  相似文献   

11.
针对四旋翼路径跟踪控制问题,研究了基于扩张状态观测器(extended state observer,ESO)、积分滑模控制器(integral sliding mode controller,ISMC)及反步法(backstepping)的四旋翼控制算法。构造了一种考虑姿态控制器响应过程的无人机控制模型;设计了扩张状态观测器对扰动进行观测,并构建了积分滑模控制器以估计扰动观测误差;设计了基于反步法的抗干扰路径跟踪控制算法,利用扩展状态观测器估计的扰动信息,通过补偿方式较好地消除了扰动影响。仿真试验表明,该方法具有良好的轨迹跟踪性能和抗干扰能力。  相似文献   

12.
针对机械臂位置跟踪控制问题,设计了一种新型自适应反演滑模控制律。该方法利用机械臂各关节的位置和速度误差建立了滑模面函数,并根据反演原理设计了反演滑模控制律。然后,通过设计合适的自适应律对外部扰动进行在线补偿,降低了系统对外部扰动的敏感性,有效地抑制了系统的抖振。最后利用Lyapunov定理证明了系统的稳定性。仿真结果说明该控制律具有较好的控制性能。  相似文献   

13.
针对一类具有未知非线性函数的严格反馈型不确定非线性系统,提出了一种自适应反推终端滑模控制方法。反推控制的前n-1步结合动态面控制技术设计虚拟控制律,第n步仅采用一个神经网络函数逼近器补偿系统所有未知非线性函数,得到了基于全局快速终端滑模控制的自适应神经网络控制器;通过引入一阶滤波器,不仅避免了传统反推控制存在的复杂计算,提高了系统的收敛速度,而且通过引入逼近误差和不确定干扰上界的自适应补偿项来消除建模误差和参数估计误差的影响,改善了稳态跟踪精度。理论分析证明闭环系统所有信号半全局一致终结有界,仿真结果验证了该方法的有效性。  相似文献   

14.
电磁铁的悬浮控制技术是磁浮列车最关键的核心技术之一.但是悬浮系统受到本质非线性和开环不稳定的影响,其控制器的设计一直存在难点和挑战.针对磁浮列车系统的稳定悬浮控制问题,设计了基于反步(Backstepping)法的非线性控制器.首先建立单点悬浮系统的非线性动力学模型,然后利用反步法将系统分成2个子系统并分别对每个子系统提出Lyapunov候选函数.在第一个子系统中设计虚拟控制量,并代入二级子系统的Lyapunov函数中获取出整个系统的控制器,接着利用Lyapunov理论验证系统的稳定性.同时,通过仿真证明:所提出的控制方法不仅具有更好的动态和稳态表现,而且能很好的抑制干扰对悬浮系统的影响.最后通过实验验证了该方法的有效性和可行性,在磁浮列车的悬浮系统方面具有良好应用前景.  相似文献   

15.
研究了具有外部扰动的TCP/AWM网络系统拥塞控制问题.首先,为了保证队列跟踪误差具有预设的暂态和稳态性能,引入漏斗误差变换对队列跟踪误差进行限制.其次,利用RBF神经网络处理系统中存在的非线性项.结合漏斗控制、有限时间控制、自适应Backstepping技术和RBF神经网络,提出了一种主动窗口管理算法,不仅保证了闭环系统的所有信号是半全局实际有限时间有界的,还使队列跟踪误差收敛到预先给定的漏斗边界内.最后,将本文所提方法与现有的两种同类算法进行了仿真对比,通过得到的仿真结果可以看出所设计的控制器使系统具有更快的收敛速度和更小的超调量,进一步验证了所提方法的可行性和优越性.  相似文献   

16.
一种改进的非线性离散系统迭代学习控制算法   总被引:1,自引:0,他引:1  
针对非线性离散时变系统的迭代学习控制问题,提出了一种改进的迭代学习控制算法。在新控制算法中,除了在传统算法基础上增加了状态补偿外,还引用了小波变换来对跟踪误差进行了滤波而没有相位补偿。利用该算法进行学习控制,使系统的实际输出以更快的速度收敛于系统的理想输出;并进一步从理论上证明了新算法的收敛性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号