首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 127 毫秒
1.
在微波条件下, 系统地研究了催化剂和微波辐射功率对Schiff 碱合成的影响,并和传统搅拌合成方法进行了比较。研究了三种催化剂硫酸氢纳、三氯化铝和三氯化锑对Schiff 碱合成的催化活性。通过红外光谱、核磁氢谱和元素分析等对产品进行结构表征。研究结果表明:反应过程具有反应时间短和反应条件温和的特点;微波辐射功率800?W就可以满足反应条件;路易斯酸三氯化锑比其它的催化剂表现更高的催化活性;催化剂摩尔分数为6%就能明显的促进反应进程。  相似文献   

2.
在微波辐射条件下,以对羟基苯甲酸与乙醇为原料,SnCl4/C为异相催化剂,高效、绿色地合成对羟基苯甲酸乙酯.分别研究催化剂用量、醇酸摩尔比、反应时间、反应温度、微波辐射功率等对收率的影响,并采用傅里叶变换红外光谱(FT-IR)、核磁共振氢谱(1 H NMR)和质谱(MS)确定产物的结构.结果表明:合成对羟基苯甲酸乙酯最佳条件为n(对羟基苯甲酸)∶n(乙醇)=1∶4,反应时间为25min,催化剂的质量分数为10%,反应温度为120℃,微波辐射功率为640W,产品收率为95%;SnCl4/C催化剂循环使用4次后,仍然显示出良好的催化活性,产率可达89%.  相似文献   

3.
在微波辐射下,以三氯化锑(SbCl3)作为催化剂促进2-氨基苯甲酰胺和各种酰胺缩合反应,高效地合成了4(3H)-喹唑啉酮衍生物。产品经测定熔点、核磁共振氢谱、红外光谱等方法得到确认。目标产物经过乙醇重结晶纯化,收率在65%~92%。最优合成条件为:反应物在微波700W辐射10min,催化剂用量为10%(以邻氨基苯甲酰胺的mol量计算)。此方法具有反应时间短、操作简单、环境友好等优点。  相似文献   

4.
通过2,4—二羟基苯乙酮和乙醇胺反应生成Schiff碱,并与Cu(Ⅱ),Zn(Ⅱ),Ni(Ⅱ)和Co(Ⅱ)形成配合物,经红外光谱法、紫外光谱法等手段对所合成的Schiff碱及其配合物结构进行了表征,并对其配合物催化活性进行了研究。  相似文献   

5.
研究了苯甲醛和卤仿在微波辐射条件下相转移催化合成扁桃酸的工艺,探讨了合成过程中催化剂种类、催化剂用量、反应物的摩尔配比、微波辐射功率、体系反应温度、微波辐射时间等对该合成反应的影响,并通过熔点和红外光谱对产物进行了表征.实验结果表明,在微波辐射功率为300W,系统反应温度为60℃,反应时间为20min,苯甲醛、氯仿和四丁基氯化铵(TBAC)的摩尔比为1∶1.76∶0.03时,扁桃酸的产率可达60.4%.  相似文献   

6.
文中以水杨酸、乙酸酐为主要原料,以明矾作为催化剂,用微波法快速合成阿司匹林。系统讨论了反应物料比、催化剂用量、微波反应温度、微波反应时间及微波辐射功率等因素对产率的影响,确定了阿司匹林的最佳合成工艺条件。通过试验研究,优化出最佳合成工艺条件为:n(水杨酸)∶n(乙酸酐)=1∶2,催化剂用量为水杨酸质量的7.2,微波反应温度70℃,微波反应时间20 min,微波辐射功率400 W时,纯化后阿司匹林产率达到83.01。既可强化学生的环保意识,又可使学生掌握绿色化学的实用技术。  相似文献   

7.
微波辐射相转移催化合成α-呋喃丙烯酸   总被引:2,自引:1,他引:1  
在微波辐射和相转移催化剂的条件下,利用Perkin反应,快速合成了α 呋喃丙烯酸;考察了微波辐射功率、微波辐射时间、不同种类的相转移催化剂、催化剂用量及反应物的物料比对反应产物的影响.研究结果表明:在微波辐射功率为260W、微波反应时间为11min、以聚乙二醇1000(PEG1000)为相转移催化剂,糠醛与乙酐的体积比为1∶2,糠醛与无水碳酸钾的量比为1.00∶0.55时,α 呋喃丙烯酸的产率为72.3%.  相似文献   

8.
目的研究合成新生物活性化合物。方法DL-高半胱氨酸硫内酯(3-氨基-二氢噻吩-2-酮)盐酸盐与取代苯甲醛反应,通过优化反应条件,得到3-氨基-二氢噻吩-2-酮类Schiff碱,新化合物结构进行了IR,1H NMR和元素分析。结果合成了6个未见文献报道的新Schiff碱类化合物。结论本文报道的合成方法具有反应条件温和,操作简便易于进行的优点。  相似文献   

9.
为进一步研究Schiff碱及配合物新的生物活性,以水杨醛与取代苯胺为主要原料,在乙醇中溶剂、醋酸催化下,通过回流反应以76%~79%的产率合成了8种新的苯胺水杨醛Schiff碱化合物。产物经元素分析和核磁共振氢谱表征,结果表明产物实际结构与理论结构相符。  相似文献   

10.
采用微波辐射方法合成了水杨醛缩邻苯二胺Schiff碱及其Cu(Ⅱ)、Ni(Ⅱ)两种金属配合物;通过红外光谱、元素分析、热重-差热对Schiff碱及其配合物进行了表征。采用循环伏安法研究了两种配合物在DMF溶液中的电化学性质。  相似文献   

11.
含氮有机碱活化CO2分子及合成碳酸乙烯酯的催化活性研究   总被引:1,自引:0,他引:1  
合成五种4-氨基-3,5-二取代-1,2,4-三唑及四种与对羟基苯甲醛缩的Schiff碱,作为含氮有机碱催化剂,用来催化由二氧化碳与环氧乙烷合成碳酸乙烯酯的反应,通过结构特点和碱性强弱碱解释评价其催化活性,并且对反应机理进行了初步探讨,实验结果表明,催化活性顺序:三唑Schiff碱〉4-氨基-3,5-二取代-1,2,4-三唑,这与含氮有机物碱性大小是一致的。  相似文献   

12.
微波照射下氯乙酸异丙酯的催化合成   总被引:10,自引:0,他引:10  
报道了以不同催化剂在微波照射条件下催化合成氯乙酯异丙酯的新方法,并与常规的合成方法进行了比较。实验结果显示,在微波照射条件下,以三氯化铁为催化剂进行催化合成,其反应速率明显高于同条件下的常规合成法,反应1h,氯乙酯异丙酯的产率便达77.7%,且所得产品无色透明,具有很高的纯度;而在微波照射下,以四氯化锡为催化剂,其催化活性明显低于三氯化铁。另外还分析了微波照射和适当的催化剂存在时提高反应速度的机理。  相似文献   

13.
王彩霞  徐翠莲  樊素芳  杨国玉 《河南科学》2010,28(11):1396-1397
以水杨酸和乙酸酐为原料,选用不同催化剂,用微波法快速合成阿司匹林.通过实验考察了原料用量比、不同催化剂、微波辐射功率、辐射时间等因素对产率的影响,得到了最佳合成工艺条件:水杨酸和乙酸酐量的比为1∶1.5,微波功率为550 W,用乙酸钾作催化剂,辐射时间5 min时,纯化后产物产率高达81.46%.  相似文献   

14.
焙烧条件对Cu/ZnO/Al2O3甲醇催化剂的影响   总被引:9,自引:0,他引:9  
介绍了用草酸盐胶态共沉淀法制备纳米Cu/ZnO/Al2O3催化剂过程中焙烧条件对催化剂结构性质及其二氧化碳加氢制甲醇催化活性的影响。结合多种现代表征手段,研究了焙烧气氛、焙烧温度和焙烧过程不同升温速率对催化剂晶粒大小、结构及各组分间相互作用的影响。在此基础上,将该催化剂用于二氧化碳加氢制甲醇反应。催化反应结果表明,纳米金属铜催化剂显示出优良的二氧化碳加氢反应性能,焙烧条件对催化剂性质影响显著。  相似文献   

15.
以D-葡萄糖为原料制备一种碳基固体酸催化剂,采用X线衍射(XRD)、红外光谱(FT-IR)和酸密度测定等手段对催化剂进行表征,并以醋酸甲酯水解为探针反应,考察碳化和磺化温度对催化剂活性的影响。结果表明:碳基固体酸催化剂是由连接有磺酸基(—SO3H)的芳香碳片组成的无定形碳;当碳化温度为450℃、磺化温度为90℃时,制备的酸密度为1.4 mmol/g的催化剂具有较高的催化活性。与分子筛HZSM-5和强酸性阳离子交换树脂Amberlyst-15相比,碳基固体酸催化剂具有更高的转化频率。催化剂重复使用8次后,醋酸甲酯水解率稳定在10.5%左右,表明催化剂具有较好的稳定性。  相似文献   

16.
1991年,Arduengo等分离出第一个稳定的N杂环卡宾——咪唑-2-碳烯,之后,N杂环卡宾化学得到了迅速的发展,在多种催化反应中得到了广泛的应用.本文综述了N杂环卡宾在催化有机反应中的研究进展,如催化安息香缩合反应、Stetter反应、a3-d3极性反转反应、开环反应、酯基交换反应、开环聚合反应.  相似文献   

17.
微波辅助合成蒽醌类衍生物方法研究   总被引:1,自引:0,他引:1  
报道了一种快速,简便,有效的一步合成蒽醌类衍生物的方法.以邻苯二甲酸酐和苯的衍生物为原料,AlCl_3/PPA或AlCl_3/H_2SO_4为催化剂,微波辐射下一步合成了蒽醌类衍生物,并考察了不同类型催化剂对反应的影响.结果显示,对于具有给电子取代基苯类衍生物,AlCl_3/H_2SO_4的催化效果较好,而对于有吸电子取代基的苯类衍生物,AlCl_3/PPA的催化效果较好.合成的蒽醌类衍生物的结构均通过UV、IR、~1H NMR和MS谱进行了确认.  相似文献   

18.
以KIT-6为模板用硬模板法合成了有序中孔铁催化剂,并引入Cu助剂,考察其费-托合成反应催化性能,采用原位小角X-射线衍射和N2物理吸附等对其表征,考察了Cu助剂和CO还原对其催化性能和结构的影响.结果表明:模板法合成的铁催化剂不同于传统沉淀铁催化剂,它具有特殊的有序中孔结构和较大的比表面积,较高的费-托合成反应活性和C5+选择性.Cu助剂使有序中孔铁催化剂的还原性提高,故活性最高.CO还原后的催化剂为孔径均一的中孔结构,比表面积较大,但有序性降低,存在部分孔坍塌.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号