首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Japan started the national project “COURSE 50” for CO2 reduction in the 2000s. This project aimed to establish novel technologies to reduce CO2 emissions with partially utilization of hydrogen in blast furnace-based ironmaking by 30% by around 2030 and use it for practical applications by 2050. The idea is that instead of coke, hydrogen is used as the reducing agent, leading to lower fossil fuel consumption in the process. It has been reported that the reduction behavior of hematite, magnetite, calcium ferrite, and slag in the sinter is different, and it is also considerably influenced by the sinter morphology. This study aimed to investigate the reduction behavior of sinters in hydrogen enriched blast furnace with different mineral morphologies in CO–CO2–H2 mixed gas. As an experimental sample, two sinter samples with significantly different hematite and magnetite ratios were prepared to compare their reduction behaviors. The reduction of wustite to iron was carried out at 1000, 900, and 800°C in a CO–CO2–H2 atmosphere for the mineral morphology-controlled sinter, and the following findings were obtained. The reduction rate of smaller amount of FeO led to faster increase of the reduction rate curve at the initial stage of reduction. Macro-observations of reduced samples showed that the reaction proceeded from the outer periphery of the sample toward the inside, and a reaction interface was observed where reduced iron and wustite coexisted. Micro-observations revealed three layers, namely, wustite single phase in the center zone of the sample, iron single phase in the outer periphery zone of the sample, and iron oxide-derived wustite FeO and iron, or calcium ferrite-derived wustite 'FeO' and iron in the reaction interface zone. A two-interface unreacted core model was successfully applied for the kinetic analysis of the reduction reaction, and obtained temperature dependent expressions of the chemical reaction coefficients from each mineral phases.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1940-1948
The evolution of inclusions and the formation of acicular ferrite (AF) in Ca–Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca–Al–O, Ca–Al–Mg–O, and La–Mg–Ca–Al–O after Ca, Mg, and La addition, respectively. The type of oxide inclusion in the final quenched samples was the same as that in the molten steel. However, unlike those in molten steel, the inclusions were Ca–Al–Ti–O + MnS, Ca–Mg–Al–Ti–O + MnS, and La–Ca–Mg–Al–Ti–O + MnS in Mg-free, Mg-containing, and La-containing samples, respectively. The inclusions distributed dispersedly in the La-containing sample. In addition, the average size of the inclusions in the La-containing sample was the smallest, while the number density of inclusions was the highest. The size of effective inclusions (nucleus of AF formation) was mainly in the range of 1–3 μm. In addition, the content of ferrite side plates (FSP) decreased, while the percentage of AF increased by 16.2% due to the increase in the number of effective inclusions in the La-containing sample in this study.  相似文献   

3.
Continuous-drive rotary friction welding was performed to join cylindrical specimens of carbon steel (EN24) and nickel-based superalloy (IN718), and the microstructures of three distinct weld zones—the weld interface (WI)/thermo-mechanically affected zone (TMAZ), the heat-affected zone (HAZ), and the base metal—were examined. The joint was observed to be free of defects but featured uneven flash formation. Electron backscatter diffraction (EBSD) analysis showed substantial changes in high-angle grain boundaries, low-angle grain boundaries, and twin boundaries in the TMAZ and HAZ. Moreover, significant refinement in grain size (2–5 μm) was observed at the WI/TMAZ with reference to the base metal. The possible causes of these are discussed. The microhardness profile across the welded joint shows variation in hardness. The changes in hardness are ascribed to grain refinement, phase transformation, and the dissolution of strengthening precipitates. The tensile test results reveal that a joint efficiency of 100% can be achieved using this method.  相似文献   

4.
《矿物冶金与材料学报》2020,27(11):1489-1498
The specific distribution characteristics of inclusions along with the sliver defect were analyzed in detail to explain the formation mechanism of the sliver defect on the automobile exposed panel surface. A quantitative electrolysis method was used to compare and evaluate the three-dimensional morphology, size, composition, quantity, and distribution of inclusions in the defect and non-defect zone of automobile exposed panel. The Al2O3 inclusions were observed to be aggregated or chain-like shape along with the sliver defect of about 3–10 μm. The aggregation sections of the Al2O3 inclusions are distributed discretely along the rolling direction, with a spacing of 3–7 mm, a length of 6–7 mm, and a width of about 3 mm. The inclusion area part is 0.04%–0.16% with an average value of 0.08%, the inclusion number density is 40 mm?2 and the inclusion average spacing is 25.13 μm. The inclusion spacing is approximately 40–160 μm, with an average value of 68.76 μm in chain-like inclusion parts. The average area fraction and number density of inclusions in the non-defect region were reduced to about 0.002% and 1–2 mm?2, respectively, with the inclusion spacing of 400 μm and the size of Al2O3 being 1–3 μm.  相似文献   

5.
The co-oxidation of As(III) and Fe(II) in acidic solutions by pressured oxygen was studied under an oxygen pressure between 0.5 and 2.0 MPa at a temperature of 150°C. It was confirmed that without Fe(II) ions, As(III) ions in the solutions are virtually non-oxidizable by pressured oxygen even at a temperature as high as 200°C and an oxygen pressure up to 2.0 MPa. Fe(II) ions in the solutions did have a catalysis effect on the oxidation of As(III), possibly attributable to the production of such strong oxidants as hydroxyl free radicals (OH·) and Fe(IV) in the oxidation process of Fe(II). The effects of such factors as the initial molar ratio of Fe(II)/As(III), initial pH value of the solution, oxygen pressure, and the addition of radical scavengers on the oxidation efficiencies of As(III) and Fe(II) were studied. It was found that the oxidation of As(III) was limited in the co-oxidation process due to the accumulation of the As(III) oxidation product, As(V), in the solutions.  相似文献   

6.
7.
The potential autoclave was used to study the catalytic mechanism of Cu2+ during the oxygen pressure leaching process of artificial sphalerite. By studying the potential change of the system at different temperatures and the SEM–EDS difference of the leaching residues, it was found that in the temperature range of 363–423 K, the internal Cu2+ formed a CuS deposit on the surface of sphalerite, which hindered the leaching reaction, resulting in a zinc leaching rate of only 51.04%. When the temperature exceeds 463 K, the system potential increases steadily. The increase in temperature leads to the dissolution of the CuS, which is beneficial to the circulation catalysis of Cu2+. At this time, the leaching rate of Zn exceeds 95%. In addition, the leaching kinetics equations at 363–423 and 423–483 K were established. The activation energy of zinc leaching at 363–423 and 423–483 K is 38.66 and 36.25 kJ/mol, respectively, and the leaching process is controlled by surface chemical reactions.  相似文献   

8.
Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316L and low alloy high strength steel L415. The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316L and L415 was systematically investigated. The microstructures of both heat affected zones of L415 and weld metal were substantially refined, and the clusters of δ ferrite in traditional tungsten inert gas (TIG) weld were changed to a dispersive distribution via the ultrasonic vibration. The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld. With the application of ultrasonic vibration, the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15% to 31.54%, respectively. The content of Σ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one, indicating an excellent weld metal crack resistance.  相似文献   

9.
Natural magnetite formed by the isomorphism substitutions of transition metals, including Fe, Ti, Co, etc., was activated by mechanical grinding followed by H2 reduction. The temperature-programmed reduction of hydrogen (H2-TPR) and temperature-programmed surface reaction of carbon dioxide (CO2-TPSR) were carried out to investigate the processes of oxygen loss and CO2 reduction. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS). The results showed that the stability of spinel phases and oxygen-deficient degree significantly increased after natural magnetite was mechanically milled and reduced in H2 atmosphere. Meanwhile, the activity and selectivity of CO2 reduction into carbon were enhanced. The deposited carbon on the activated natural magnetite was confirmed as amorphous. The amount of carbon after CO2 reduction at 300°C for 90 min over the activated natural magnetite was 2.87wt% higher than that over the natural magnetite.  相似文献   

10.
11.
外圆纵向磨削加工磨削力模型   总被引:2,自引:0,他引:2  
从简化的单个磨粒的切削状态出发,根据解析原理,建立了外圆纵向磨削加工磨削力模型,为磨削过程的分析提供理论基础,并为磨削过程优化、智能控制、虚拟磨削创造了必要的前提条件。试验结果和仿真结果具有良好的一致性。  相似文献   

12.
超细粉碎过程助磨剂的作用机理   总被引:1,自引:0,他引:1  
通过粉体ζ-电位、矿浆粘度测定及光电子能谱(XPS)和分散率分析,研究了搅拌磨超细粉碎滑石粉过程中助磨剂的助磨行为.分析了六偏磷酸钠与滑石粉的表面作用及吸附特性,提出了助磨剂在超细粉碎过程中的吸附模型.此外,探讨了助磨剂对超细粉碎行为的影响.研究结果表明,助磨剂通过与滑石粉的吸附作用,降低了矿浆粘度,从而提高了超细粉碎的效率.  相似文献   

13.
铝土矿选择性磨矿中磨矿介质的研究   总被引:7,自引:0,他引:7  
研究了球形、短圆柱形和短圆柱 球形3种磨矿介质对铝土矿选择性磨矿的作用.研究结果表明:大直径球形介质对粗粒级铝土矿的冲击力较大,容易造成过粉碎,小直径球形介质的擦洗作用能提高粗粒级铝土矿的铝硅比;短圆柱介质对铝土矿磨矿具有较好的选择性,但对铝硅比的提高幅度较小,磨矿速率较低;短圆柱 球形介质具有球形介质和短圆柱介质的优点,既具有较高的磨矿速率,又能较大幅度地提高粗粒级的铝硅比,适合铝土矿选择性磨矿的要求.对于短圆柱 球形介质,介质配比对铝土矿选择性磨矿的磨矿效果有明显的影响.  相似文献   

14.
平面凸轮磨削过程磨削力的适应控制研究   总被引:1,自引:0,他引:1  
以数控凸轮磨床的磨削过程为研究对象,提出了一种基于神经网络的适应控制方法,并采用MATLAB进行了控制器的设计和磨削加工的仿真验证,结果表明该方法能有效地解决凸轮磨削过程中的磨削力的波动问题,控制器具有良好的动态特性,实现了凸轮磨削过程中恒磨削力控制,进而提高凸轮磨削质量的目的.  相似文献   

15.
通过对振动磨机碎矿特点的分析,采用正交分析的方法对磨机破碎效果的试验研究,认为:在影响振动磨机破碎效率诸多因素中,磨介的级配、振幅及频率是主要因素.其中磨介的级配又是重要因素.合理地选择磨介及级配,将有助于提高磨机的碎矿效率.在试验条件下,其磨介级配为1∶2∶4.图2,表1,参6.  相似文献   

16.
针对螺杆转子成形磨削中端面截形为离散点数据的情况,应用空间啮合原理建立了螺杆转子齿面加工的数学模型,推导了砂轮回转面和转子螺旋面之间的接触条件式,综合运用三次参数样条函数法、追赶法和fsolve函数,利用MATLAB软件编程计算出了砂轮轴向截形,为砂轮数控修整程序的编制提供了有效数据。  相似文献   

17.
张磊  徐晓辉 《应用科技》2010,37(7):35-39
在弹性力学的基础上,建立了金属芯砂轮强度和变形的数学模型,探讨金属芯砂轮材质、内外径尺寸和磨削速度等参数对砂轮强度和变形的影响规律,得出砂轮的径向应力随着内孔与外圆半径尺寸比的增大而减小;圆周应力随着内孔与外圆半径尺寸比的增大而增大.径向位移的最大值随着内孔与外圆半径尺寸比的增大有一极小值.随着磨削速度的增大,钢制金属芯砂轮的圆周应力和径向位移的增大值高于铝合金制金属芯砂轮.  相似文献   

18.
研究了凸轮轴零件切点跟踪磨削法高速磨削运动的特点;分析了砂轮中心位移模型及恒线速磨削条件下的凸轮理论转速,并进行了凸轮转速的优化.最后对湖南大学开发的MKC200超高速数控非圆轮廓外表面磨床进行了介绍.  相似文献   

19.
选用三异丙醇胺和市售助磨剂与复合助磨剂进行对比,在相同掺量、相同粉磨时间下通过分析钢渣水泥的细度及物理性能的变化,从微观和宏观相结合的角度对助磨剂的作用机制进行了探讨。结果表明:复合助磨剂能够很好地降低钢渣水泥的45μm筛余、提高粉体的均匀性指数。复合助磨剂没有改变钢渣水泥水化产物的种类,只是增加了水化产物的数量,加快了粉体矿物的水化进程,钢渣颗粒的活性得到较好的激发,C-S-H凝胶、Ca(OH)2晶体和钙矾石结合紧密,因此强度得到提高。  相似文献   

20.
针对数控外圆磨床的运行条件,提出在监测过程中遇到的问题及解决方法,并将该方法运用到实际数控机床电机电流的实时监测中,证明了方法的可行性和价值性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号